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Abetract 

A new model for MOS transistors suitable for 
logic simulation of VLSI circuits is presented based 
on the concept of a Dynamically Directed Switch 
(DDS). In this model, transistors are represented by 
directed edges in a graph, capable of changing their 
direction dynamically. A new distributed algorithm 
for switch-level simulation is presented based on an 
incremental graph algorithm where edge and vertex 
labels are updated as a consequence of circuit events. 
The result is a switch-level algorithm that runs at 
speeds approaching gate-level logic simulators, while 
dealing with all the features associated with switch- 
level simulation : bidirectional signal flow, ratioed 
logic, RC-tree timing, and correct handling of 
transistor signal propagation in the presence of unk- 
nown signals. The implementation of this algorithm 
in the Lsim Mixed-Mode Analog and Digital Simul& 
tar is described, and some results and examples are 
presented. 

1 Introduction 

The demand for high-speed switch-level simula- 
tors has led to the development of many different 
models and algorithms. Generally, most models are 
either continuous (e.g. the RSIM model [l]) or discrete 
(e.g. the MossimII model 121) in representing vol- 
tages, resistances and currents, In this paper we focus 
our attention on discrete signal models which give 
rise to two classes of simulation algorithms: global 
and distributed. In global algorithms, a solu-tion is 
achieved by tracing paths [2] in a graph representing 
part of the network, or by solving a set of boolean 
path equations (31. Distributed algorithms, on the 
other hand, aim to achieve the same result by consid- 
ering only a single component at a time, and its 
interaction with neighboring components. 

Hayes has developed a model of distributed 
switch-level simulation based on a lattice of signal 
strengths [4], which is capable of handling sonz of 
the phenomena associated with MOS VLSI. However, 
the global properties of the iteration scheme used to 
actually derive the steady-state response of the circuit 
have not been analyzed by Hayes. Indeed, the algo- 
rithm converges to the wrong state in some fairly 
straightforward cases as pointed out by Bryant 151. 

In another recently proposed distributed algo- 
rithm [S], events are processed locally in terms of 
whether they decrease or increase the path resistance 
from the source. In the latter case, pseudo-events are 
generated to allow new paths to become dominant. 
This method is more general than Hayes’ approach 
and yields the correct results where Hayes’ model 
fails. However, the concept of pseudo-event propaga- 
tion and the rule-based nature of the algorithm make 
it very difficult to analyze its complexity and limita- 
tions. 

In this paper, a new approach to distributed 
switch-level simulation is developed based on a new 
transistor model and a set of algorithms for incre- 
mentally updating node states. Using this approach, it 
is possible to explicitly formulate the global behavior 
of the simulation algorithm, and compare its results 
with other graph-based switch-level simulators. 

2 Neixvork Model 

A discrete signal is defined as an ordered pair 
<I ,s > where 1 is the logic level and s is the 
discrete strength. The set of possible signal strengths 

Y= (2, Cl, c2 ,..., C,) dl, d2 ,...) d,, sj 

which is totally ordered 

.% <Cl <...Cc, cdl C...<d,, CS 

is partitioned into four groups of signals representing 
hi-impedance, charged, driven, and supply strengths 
respectively. 

Two factors directly affect the accuracy of the 
switch-level model in predicting the correct steady 
state of a digital MOS circuit: the number n of dif- 
ferent conductance values used, and the algebra of 
signals defined over the set Y. In Bryant’s model 

I% n is restricted to a small integer value, and the 
algebra (Y, + , .,z,S) is chosen to be a closed semiring 
algebra, by interpreting the operators ‘i-’ and ‘.I as 
the ma&mum and minimum operators over the ele- 
ments of Y. However, the path algebra may be 
defined differently, by leaving ‘*’ as the minimum 
operator, while defining I+’ as a true additive opera- 
tor over transistor resistances, which produces a more 
accurate path resistance for transistors connected in 
series. 
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2.1 The DDS ‘Ihnsistor Model 

The most commonly used transistor mode! for 
switch-level simulation is that of a bidirectional 
switch, with a series resistance or conductance. This 
model is the basis of a wide variety of algorithms, 
ranging from the Theuenin model used in RSIM [l], 
through Bryant’s MossimII model [2], and taken to an 
extreme in Hayes’ Connector-Switch-Attenuator model 
[4], where signals actually flow through a transistor 
in both directions at the same time. 

Physically, the MOS transistor is never truly 
bidirectional. At any given time, the current Id, 
through the channel is determined by the voltages 

56 and vd6 , and whenever Id, is not zero, it flows 
in a deJnite direction. The Dynamically Directed Switch 
(DDS) model captures the transistor’s ability to 
dynamically change the direction of current flow 
through the channel, according to the gate, drain and 
source conditions. 

At any point in time, a MOS transistor circuit 
may be viewed as a set of mutually exclusive channel 
graphs. A channel graph G(V,E) is defined as a con- 
nectivity function between a set of vertices V, 
representing circuit nodes, and a set of edges E, 
representing on-transistors whose drain and source 
terminals lie within V. Each channel graph consists 
of a single connected component. 

For two vertices u ,u L V, with strengths 8 (U ) 
and s (u ) respectively, the direction of the edge e,, 
connecting them is defined as: 

u 

1 

-+V if 8 (u pi3 (w ) 

direction (e, ) = v - u if 8 (V )>8 (U ) 

0 if 8 (U )=S (V ) 

This is analogous to defining the signal as flow- 
ing from the point of higher ‘potential’ to points of 
lower potential. When both nodes have the same 
strength, no direction is assigned,. meaning that the 
edge cannot contribute to the strength calculation at 
either node. If all signal sources in the graph are of 
the same logic level, we may disregard such edges 
completely. How ever, if conflicting sources are 
present, undirected edges must transmit their logic 
levels in both directions. Thus undirected edges are 
ignored for strength calculation, and considered only 
for signal level calculation. 

With each transistor we associate a resistance 
from the set 

fi - {fl, f2,...,fnl 

where resistances are ordered: 

a(8k ,rj )= 

if 8k i8 dn’ven /SUppi 

othenoise 

where we explicitly enforce k -j 21 by choosing n 
sufficiently large (in Lsim n =4096) to model al! pos- 
sible path resistances in a given technology. 

A directed path of length k is defined as a 
sequence of edges <ec,r ,er,s ,...,ek-r,k >, such that 
for i =O,l...k edge ei -r,i is an edge from vertex 
Vi -1 to vertex vi which satisfies: 

1. ei -I,; is directed Vi -1 - Vi 

a dominant directed path is a directed path which also 
satisfies: 

2. 8 (8 (Vi- I ),f (ei -1,i ))=a (% )) 

An edge which is incident on vertex u and is 
on a dominant path to v is said to dominate v A 
node may have more than one dominator, but all 
dominators must have the same strength. If only one 
edge dominates v it is called a single dominutor oi 
that node. The following proposition (which is given 
here without proof) forms the basis of our dynamic 
updating algorithms: 

proposition 1: A channel-graph directed by the rules 
given in this section cannot contain any directed 
cycles. 

Thus, the problem of determining the signal strength 
at each node can be restricted to dealing with directed 
acyclic graphs. 

3 Shortest path Algorithms 

The problem of finding the steady state 
strength and level for each node in the circuit graph 
can be formulated as a shortest-path problem using 
the algebra defined in the previous section. Bryant’s 
solution method [2] consists of applying a shortest 
path algorithm (which is a variation of Dijkstra’s 
single-source algorithm using buckets (71) three times 
to find the strongest charging .path and the strongest 
discharging path to each node ‘in the graph (the third 
pass is needed to deal with unknown signals). The 
steady state of each node is found by comparing the 
strengths of these paths. The disadvantage of this 
approach is that the network must be explicitly parti- 
tioned into channel-graphs for each event, and all 
node labels within each graph must be reevaluated. 
Although the worstrcase time of this algorithm is 
linear in the number of edges in each graph, the 
actual run time is quite large due to the fact that 
each edge must be considered at least 7 times (1 for 
partitioning and at least 3X2 times for the shortest 
path calculations). The Algorithm is essentially 
memoryless, in that each new event is processed by 

rl Cr2 <...Cr,. creating new channel graphs to be solved. 

Note that the index n used here is the same as in We propose an alternative method which keeps 
the definition of Y. The transfer function of a track of incremental changes occurring in the graphs, 
transistor, which is used to calculate its contribution and develop algorithms to dynamically update the 
to the strength of its output node, is defined as: graph labels. The incremental updating method, 
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however, must be based on a distributed shortestrpath 
algorithm. 

As the basis for our approach, we choose a dis- 
tributed version of Ford’s algorithm 181, which is 
attributed to Moore [9]. We use Hayes notation 
#(node) to denote the operation of finding the steady 
state of a node as a function of all signals coming 
into that node through the channels of conducting 
transistors. 

Algorithm SHORT 

(0) ehort(u) 1 
(1) foreach edge e,, 

[ii 
if (8 (U )hs (u ) { 

if (s (u )>s (u ) direction(e,, ) = u -u ; j 
(4 

[58{ 

ca~culpf$fu ),r (euv ))I; 
%mu 
if (s,, +s (i )) 1 

13 
8 (u )=%, ; 
sue(v); 

(9) 
(4 1’ 
(b) 1 

Note that lines (4) and (5) in the algorithm, 
when performed incrementally, are analogous to the 
standard operation in shortest path algorithms: 

5 = minimum ( 8i , sj + d<j ) 

The algorithm is ‘activated’ by scheduling the source 
node for execution, and the call que(v) places node v 
on a FIFO queue for execution of this algorithm. 

The worstrcase complexity of this algorithm is 
0 ( ] V ] - ] E ] ), however, the leuelized implementa- 
tion using FIFO ordering of events prevents the worst 
case from occurring in graphs arising from MOS cir- 
cuits. Experimental results have shown this algorithm 
to be more efficient than Dijkstra’s method for large 
classes of graphs. [lo] [9]. 

In the following sections we present algorithms 
for maintaining and updating the labels of a graph 
using strictly local information. Three types of 
events may occur in switch-level channel graphs: edge 
addition and deletion corresponding to transistors 
turning on or off, and changes in drain/source 
strengths entering transistors which occur as a .result 
of an edge event or a change in an external source. 
The latter type of events will be dealt with in the 
context of edge events. 

4 Incrementally Adding an Edge 

Let GI(V1,E1) and G2(V2,Ez) be two graphs 
which have been directed and labeled by the SHORT 
algorithm. The graphs are either mutually exclusive 
or G1 = Gp. Each vertex is labeled by s (U ) and 
each edge is directed and labeled with its resistance. 
The graphs, ss we have claimed, posess no directed 
cycles. 

Now assume that a transistor which was form- 
erly off - turns on. This corresponds to the creation 
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of a new edge evtr Let u tvr and u EVA. The addi- 
tion of the edge evu will. result in a new graph 
G(V,E), whose vertices are V = V rUv2, and whose 
edge set is E - ~~lJ~~lJ{e,, }. Since both graphs 
were assumed to have reached their steady state, the 
direction of the new edge evU is found by comparing 
8 (u ) and 8 (u ) as defined earlier. Assume that the 
edge is found to be directed u -u . 

When the edge evU turns out to be a new sin- 
gle dominator of u , only the subgraph rooted at u 
node may have to be updated. This is accomplished 
by queuing the target node for execution of Algorithm 
SHORT, and allowing the shortest path calculation to 
proceed from there. The important point to note 
here is that once the direction of the edge evu is 
determined to be u -u , the state of node u and all 
its predecessors cannot be changed by adding the new 
edge because there can be no directed feedback paths 
from G2(Vg,Es) to G1(V1,El) which affect the 
dominant path to u (this would result in a directed 

If the edge e,, is found to be undirected 
(“$?j=8 (U )) then the state of both nodes may 
change, causing both nodes to reconsider their state. 
This time the effects of the changes will only pro- 
pagate through undirected edges or edges directed 
outward. 

Figure 1 shows an example of incremental edge 
addition. When the top transistor turns on, its direc- 
tion is found to be n i 4 n2 by comparing 
s (tar )=dg with s (ns )=d,. Since the strength of 
node n2 is not affected by this event - no further 
action is taken. 

(i) 
H 

1 m(L.dd)- 

(ii) 

Figure 1: Transistor turning on 

If the resistance of the switching transistor were r = 1 
instead of 2, it would ‘become a new single dominator 
of n2, and all node strengths further down the path 
would be reevaluated by applying the SHORT algo- 
rithm from n2. 



6 Incrementally Deleting an Edge 

Incremental edge deletion due to a transistor 
turning off is slightly more complicated because it 
may cause one signal path to be broken, and another 
path to override it at some other node. Furthermore, 
when a path is broken, all signals which are further 
down the path are, no longer valid, and even their 
edge directions may no longer be valid. On the 
other hand, if an edge eUv (directed u --u ) which is 
not a dominator of 21 is deleted, node 2) and all 
nodes further down the path will not be affected at 
all. 

The problem then becomes, how to consistently 
keep track of the dominators of each node. This is 
solved by keeping, for each transistor output termi- 
nal, a marker indicating whether or not it is dominat- 
ing the output node, and a dominator-count for each 
node. When a single dominator is removed from a 
node, its previous signal is invalidated and the node 
must find a new dominator. If none exists, the node 
will remain at its old logic level, with a charged 
strength proportional to its capacitance. All this is 
built into the #(node) operation mentioned earlier. 

H 

(i) 

(L,dlO)- 

(ii) 

(iii) 

Figure 2: Transistor turning off 

Figure 2 will be used to demonstrate the edge 
deletion algorithm. In (i), the steady state is shown 
before the transistor turns off. Node n 1 is driven to 
a state <L,d s> by a single dominator, and node ns 
is driven to <L,d,p by two dominators. When the 
single dominator of n 1 is deleted, its state becomes 
charged since no other transistors are directed into 
the node. Both outgoing transistors are then 

scheduled. Assume the top transistor runs first, it 
determines that it wa8 a dominator of tap but not a 
single dominator, so it decrements the dominator 
count of r~z by one and returns (ii). Now the other 
transistor runs, and this time it k a single dominator 
of n2, SO the signal <L,de> is invalidated and ns 
settles to its charged state <L,c a> (since there are 
no other drivers present), which is then propagated 
back to n i through both transistors as shown in (iii). 

Consider the effect of having a third transistor 
driving node n2. If its strength were weaker, it 
would have a chance to become dominant when the 
previous single winner is removed. This transistor 
may have initially been directed outward from ns, in 
which case it would run when n2 becomes charged 
and determine that its direction is no longer valid - 
duplicating the case shown in Figure 2(i). If it were 
stronger, then the two parallel transistors would be 
pointing the other way, and the transistor event dep- 
icted would not entail any updates. If the second 
source were equal in strength to the driver of n i, 
then the two parallel transistors would be undirected 
(having equal drain and source strengths) and the 
transistor event shown would only require two 
transistor updates and one node update. 

6 Correctness and Complexity 

Shortest-path updating algorithms like the one 
described here have been studied extensively in con- 
nection with routing problems in distributed packetr 
switching network. A proof of correctness of the 
updating procedure is given by Tajibnapis [ll] for the 
case of equal edge costs. It is also shown there that 
the algorithm remains correct even if edge events 
occur while the effect of other events are still being 
updated, and that the algorithm behaves correctly on 
startup. 

Jaffe and Moss [12] have shown that the updat- 
ing procedure takes linear time if some order is 
imposed during the update procedure. Such an order 
is indeed imposed in our algorithm by the fact that 
DDS transistors are only considered by the node they 
are currently driving. 

7 Unknown Handling 

Proper handling of unknown signals at the gates 
of transistors is necessary for correct simulation of 
MOS VLSI. The over-pessimistic approach of 
extended gate-level simulators [5], where an unknown 
signal at the gate of a transistor always drives its 
output to unknown, makes it impossible to correctly 
simulate many important structures such as NOR 
gates, PLAs etc. in the presence of unknown signals. 

Bryant’s solution [2] is to distinguish between 
definite paths, which only pass through an-transistors, 
and indefinite paths, where some of the transistors on 
the path may have an unknown gate state. Indefinite 
paths can be blocked by stronger definite paths, or by 
definite paths of the same strength which carry the 
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same signal level (high or low). The algorithms 
presented so far can be extended to deal with unk- 
nown signals in a similar way based on the following 
two propositions which are given here without proof. 

proposition 2 The SHORT algorithm can be extended 
to find the shortest path from a set of m (>l) 
sources (8 ,J ,...8, _ 1) to all other nodes simultane- 
ously. m can be limited to two by combining alit high 
sources and all low sources [9]. 

proposition 3: The signals propagated through the net- 
work can be extended to consist of a definite com- 
ponent and two indefinite components. 

The propagation of generalized signals can be 
shown to be identical to propagating strengths and 
then comparing them as in Bryant’s approach,, with 
the added benefit that the strength comparison 
becomes part of the signal propagation action. 

8 YthningSimuiation 

The resi&ance of the strongest dominant path 
from all signal sources is inherently embedded in the 
signal strength at each node (this follows from the 
definition of the 8 function). If the range of path 
resistance is large enough, an RC delay constant for 
each node can be formulated using this quantity. The 
time constant corresponds to an RC-tree with no 
side-branch capacitances, and produces less accurate 
results for intermediate nodes [ 131. 

This approximation, coupled with the 
algorithm’s que operation, forms the basis of a 

switch-level timing simulation mode in the LeimTM 
Mixed-mode Digital and Analog Simulator [ 141. Since 
Lsim also contains a circuitrlevel Timing Simulator 
called ADEPT (151 as well as a SPICE-level analog 
simulator, the switch-level algorithm is expected to 
produce only crude first-order delay approximations, 
where the emphasis is more on maximizing speed and 
minimizing memory requirements than on detailed 
waveform accuracy. 

9 Mixed-Mode Simulation 

The Lsim Mixed-Mode Analog and Digitol 
Simulator consists of an extensible set of simulation 
algorithms, all sharing a common infrastructure. All 
algorithms (except for the SPICE-level analog simula- 
tor) are based on cellular component models that 
interact with node signal arbitrators which determine 
the least common level at which the component 
models can communicate. 

The Dynamically Directed Switch model 
described in this paper has the advantage of easily 
and directly interfacing to other logic level com- 
ponents in the circuit, since at any given time the 
transistor mode1 appears to be a unidirectional device 
to the node it is driving. Thus, the same node may 
be driven by a behavioral model, a gate-level model 

‘I’M Lsim is a trademark ol’ Silicon Compiler Systems 

and .DDS models simultaneously and correctly deter- 
mine its resulting state. 

Mixing DDS level models with ADEPT com- 
ponents is achieved by a state-variable mapping from 
level-strength pairs to currentrconductance pairs using 
Thevenin/Norton transformations. Finally, any 
transistor level subcircuit can be toggled on the fly 
between stitch and circuit simulation modes, making 
it possible to simulate critical paths in context, run 
analog subcircuits (e.g. sense amps, bootstrap drivers) 
as part of a large logic simulation, and use the 
switch-level algorithm to initialize a circuit for more 
detailed circuit simulation. 

10 Performance 

The DDS model and algorithm have been used 
to simulate a large variety of circuits. Cells and small 
blocks are typically simulated interactively as they are 
being designed, while full VLSI chips with hundreds 
of thousands of transistors can be simulated in batch 
mode for many clock cycles while the results are 
automatically verified against those of a high-level 
behavioral model. 

Table 1: Lsim DDS Simulation Benchmarks 

The table above shows simulation statistics for 
a number of small to medium sized circuits. All 
benchmarks were performed on a SUN 3/260 with 32 
MByte of ,main memory. The mized chip entry 
represents an actual chip where only two blocks 
(including the data path) were simulated in transistor 
mode with the other blocks simulated as behavioral 
models. The Euents/Sec metric measures the number 
of DDS transistor evaluations per CPU second. 

When compared to global algorithms such as 
MossimII, it is possible to come up with examples 
where the algorithm will not provide any improve- 
ment over the memoryless approach. However for a 
typical channel graph and a typical mix of transistor 
events, the total number of label-updates is found to 
be significantly smaller using the algorithms presented 
here than using the global approach. 

As an example of the efficiency of incremental 
updating in MOS circuits, consider the CMOS parity- 
generator circuit in Figure 3 which is made up of 
dynamic XOR gates with shared terms. The simula- 
tion results for this circuit are shown in Figure 4 
using the multi-mode capabilities of Lsim. First, the 
circuit is run in ADEPT mode for several cycles, and 
then all transistors are toggled into DDS mode. Note 
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the accuracy of the delay calculations in DDS mode 
in comparison to the ADEPT waveforms. During the 
evaluation phase, the signal elk goes high causing two 
n-channel transistors to turn on and two p-channels 
to turn off. When the n-channel transistors turn on, 
a path to ground is created either to ODD- or to 
EVEN,. Updating this path requires only one opera- 
tion, because the signal is already ‘waiting’ at the 
input of the enabling transistor. 
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