
A Dynamically-Directed Switch Model for MOS Logic Simulation

Dan Adler
Silicon Compiler Systems

Martinsville Rd, P.O. Box 16
Liberty Corner, New Jersey 07938

Abetract

A new model for MOS transistors suitable for
logic simulation of VLSI circuits is presented based
on the concept of a Dynamically Directed Switch
(DDS). In this model, transistors are represented by
directed edges in a graph, capable of changing their
direction dynamically. A new distributed algorithm
for switch-level simulation is presented based on an
incremental graph algorithm where edge and vertex
labels are updated as a consequence of circuit events.
The result is a switch-level algorithm that runs at
speeds approaching gate-level logic simulators, while
dealing with all the features associated with switch-
level simulation : bidirectional signal flow, ratioed
logic, RC-tree timing, and correct handling of
transistor signal propagation in the presence of unk-
nown signals. The implementation of this algorithm
in the Lsim Mixed-Mode Analog and Digital Simul&
tar is described, and some results and examples are
presented.

1 Introduction

The demand for high-speed switch-level simula-
tors has led to the development of many different
models and algorithms. Generally, most models are
either continuous (e.g. the RSIM model [l]) or discrete
(e.g. the MossimII model 121) in representing vol-
tages, resistances and currents, In this paper we focus
our attention on discrete signal models which give
rise to two classes of simulation algorithms: global
and distributed. In global algorithms, a solu-tion is
achieved by tracing paths [2] in a graph representing
part of the network, or by solving a set of boolean
path equations (31. Distributed algorithms, on the
other hand, aim to achieve the same result by consid-
ering only a single component at a time, and its
interaction with neighboring components.

Hayes has developed a model of distributed
switch-level simulation based on a lattice of signal
strengths [4], which is capable of handling sonz of
the phenomena associated with MOS VLSI. However,
the global properties of the iteration scheme used to
actually derive the steady-state response of the circuit
have not been analyzed by Hayes. Indeed, the algo-
rithm converges to the wrong state in some fairly
straightforward cases as pointed out by Bryant 151.

In another recently proposed distributed algo-
rithm [S], events are processed locally in terms of
whether they decrease or increase the path resistance
from the source. In the latter case, pseudo-events are
generated to allow new paths to become dominant.
This method is more general than Hayes’ approach
and yields the correct results where Hayes’ model
fails. However, the concept of pseudo-event propaga-
tion and the rule-based nature of the algorithm make
it very difficult to analyze its complexity and limita-
tions.

In this paper, a new approach to distributed
switch-level simulation is developed based on a new
transistor model and a set of algorithms for incre-
mentally updating node states. Using this approach, it
is possible to explicitly formulate the global behavior
of the simulation algorithm, and compare its results
with other graph-based switch-level simulators.

2 Neixvork Model

A discrete signal is defined as an ordered pair
<I ,s > where 1 is the logic level and s is the
discrete strength. The set of possible signal strengths

Y= (2, Cl, c2 ,..., C,) dl, d2 ,...) d,, sj

which is totally ordered

.% <Cl <...Cc, cdl C...<d,, CS

is partitioned into four groups of signals representing
hi-impedance, charged, driven, and supply strengths
respectively.

Two factors directly affect the accuracy of the
switch-level model in predicting the correct steady
state of a digital MOS circuit: the number n of dif-
ferent conductance values used, and the algebra of
signals defined over the set Y. In Bryant’s model

I% n is restricted to a small integer value, and the
algebra (Y, + , .,z,S) is chosen to be a closed semiring
algebra, by interpreting the operators ‘i-’ and ‘.I as
the ma&mum and minimum operators over the ele-
ments of Y. However, the path algebra may be
defined differently, by leaving ‘*’ as the minimum
operator, while defining I+’ as a true additive opera-
tor over transistor resistances, which produces a more
accurate path resistance for transistors connected in
series.

Paper 33.3
508

25th ACM/IEEE Design Automation Conference@

CH2540-3/88/0000/0506$01 .OO 0 1988 IEEE

2.1 The DDS ‘Ihnsistor Model

The most commonly used transistor mode! for
switch-level simulation is that of a bidirectional
switch, with a series resistance or conductance. This
model is the basis of a wide variety of algorithms,
ranging from the Theuenin model used in RSIM [l],
through Bryant’s MossimII model [2], and taken to an
extreme in Hayes’ Connector-Switch-Attenuator model
[4], where signals actually flow through a transistor
in both directions at the same time.

Physically, the MOS transistor is never truly
bidirectional. At any given time, the current Id,
through the channel is determined by the voltages

56 and vd6 , and whenever Id, is not zero, it flows
in a deJnite direction. The Dynamically Directed Switch
(DDS) model captures the transistor’s ability to
dynamically change the direction of current flow
through the channel, according to the gate, drain and
source conditions.

At any point in time, a MOS transistor circuit
may be viewed as a set of mutually exclusive channel
graphs. A channel graph G(V,E) is defined as a con-
nectivity function between a set of vertices V,
representing circuit nodes, and a set of edges E,
representing on-transistors whose drain and source
terminals lie within V. Each channel graph consists
of a single connected component.

For two vertices u ,u L V, with strengths 8 (U)
and s (u) respectively, the direction of the edge e,,
connecting them is defined as:

u

1

-+V if 8 (u pi3 (w)

direction (e,) = v - u if 8 (V)>8 (U)

0 if 8 (U)=S (V)

This is analogous to defining the signal as flow-
ing from the point of higher ‘potential’ to points of
lower potential. When both nodes have the same
strength, no direction is assigned,. meaning that the
edge cannot contribute to the strength calculation at
either node. If all signal sources in the graph are of
the same logic level, we may disregard such edges
completely. How ever, if conflicting sources are
present, undirected edges must transmit their logic
levels in both directions. Thus undirected edges are
ignored for strength calculation, and considered only
for signal level calculation.

With each transistor we associate a resistance
from the set

fi - {fl, f2,...,fnl

where resistances are ordered:

a(8k ,rj)=

if 8k i8 dn’ven /SUppi

othenoise

where we explicitly enforce k -j 21 by choosing n
sufficiently large (in Lsim n =4096) to model al! pos-
sible path resistances in a given technology.

A directed path of length k is defined as a
sequence of edges <ec,r ,er,s ,...,ek-r,k >, such that
for i =O,l...k edge ei -r,i is an edge from vertex
Vi -1 to vertex vi which satisfies:

1. ei -I,; is directed Vi -1 - Vi

a dominant directed path is a directed path which also
satisfies:

2. 8 (8 (Vi- I),f (ei -1,i))=a (%))

An edge which is incident on vertex u and is
on a dominant path to v is said to dominate v A
node may have more than one dominator, but all
dominators must have the same strength. If only one
edge dominates v it is called a single dominutor oi
that node. The following proposition (which is given
here without proof) forms the basis of our dynamic
updating algorithms:

proposition 1: A channel-graph directed by the rules
given in this section cannot contain any directed
cycles.

Thus, the problem of determining the signal strength
at each node can be restricted to dealing with directed
acyclic graphs.

3 Shortest path Algorithms

The problem of finding the steady state
strength and level for each node in the circuit graph
can be formulated as a shortest-path problem using
the algebra defined in the previous section. Bryant’s
solution method [2] consists of applying a shortest
path algorithm (which is a variation of Dijkstra’s
single-source algorithm using buckets (71) three times
to find the strongest charging .path and the strongest
discharging path to each node ‘in the graph (the third
pass is needed to deal with unknown signals). The
steady state of each node is found by comparing the
strengths of these paths. The disadvantage of this
approach is that the network must be explicitly parti-
tioned into channel-graphs for each event, and all
node labels within each graph must be reevaluated.
Although the worstrcase time of this algorithm is
linear in the number of edges in each graph, the
actual run time is quite large due to the fact that
each edge must be considered at least 7 times (1 for
partitioning and at least 3X2 times for the shortest
path calculations). The Algorithm is essentially
memoryless, in that each new event is processed by

rl Cr2 <...Cr,. creating new channel graphs to be solved.

Note that the index n used here is the same as in We propose an alternative method which keeps
the definition of Y. The transfer function of a track of incremental changes occurring in the graphs,
transistor, which is used to calculate its contribution and develop algorithms to dynamically update the
to the strength of its output node, is defined as: graph labels. The incremental updating method,

Paper 33.3
507

however, must be based on a distributed shortestrpath
algorithm.

As the basis for our approach, we choose a dis-
tributed version of Ford’s algorithm 181, which is
attributed to Moore [9]. We use Hayes notation
#(node) to denote the operation of finding the steady
state of a node as a function of all signals coming
into that node through the channels of conducting
transistors.

Algorithm SHORT

(0) ehort(u) 1
(1) foreach edge e,,

[ii
if (8 (U)hs (u) {

if (s (u)>s (u) direction(e,,) = u -u ; j
(4

[58{

ca~culpf$fu),r (euv))I;
%mu
if (s,, +s (i)) 1

13
8 (u)=%, ;
sue(v);

(9)
(4 1’
(b) 1

Note that lines (4) and (5) in the algorithm,
when performed incrementally, are analogous to the
standard operation in shortest path algorithms:

5 = minimum (8i , sj + d<j)

The algorithm is ‘activated’ by scheduling the source
node for execution, and the call que(v) places node v
on a FIFO queue for execution of this algorithm.

The worstrcase complexity of this algorithm is
0 (] V] -] E]), however, the leuelized implementa-
tion using FIFO ordering of events prevents the worst
case from occurring in graphs arising from MOS cir-
cuits. Experimental results have shown this algorithm
to be more efficient than Dijkstra’s method for large
classes of graphs. [lo] [9].

In the following sections we present algorithms
for maintaining and updating the labels of a graph
using strictly local information. Three types of
events may occur in switch-level channel graphs: edge
addition and deletion corresponding to transistors
turning on or off, and changes in drain/source
strengths entering transistors which occur as a .result
of an edge event or a change in an external source.
The latter type of events will be dealt with in the
context of edge events.

4 Incrementally Adding an Edge

Let GI(V1,E1) and G2(V2,Ez) be two graphs
which have been directed and labeled by the SHORT
algorithm. The graphs are either mutually exclusive
or G1 = Gp. Each vertex is labeled by s (U) and
each edge is directed and labeled with its resistance.
The graphs, ss we have claimed, posess no directed
cycles.

Now assume that a transistor which was form-
erly off - turns on. This corresponds to the creation

Paper 33.3
508

of a new edge evtr Let u tvr and u EVA. The addi-
tion of the edge evu will. result in a new graph
G(V,E), whose vertices are V = V rUv2, and whose
edge set is E - ~~lJ~~lJ{e,, }. Since both graphs
were assumed to have reached their steady state, the
direction of the new edge evU is found by comparing
8 (u) and 8 (u) as defined earlier. Assume that the
edge is found to be directed u -u .

When the edge evU turns out to be a new sin-
gle dominator of u , only the subgraph rooted at u
node may have to be updated. This is accomplished
by queuing the target node for execution of Algorithm
SHORT, and allowing the shortest path calculation to
proceed from there. The important point to note
here is that once the direction of the edge evu is
determined to be u -u , the state of node u and all
its predecessors cannot be changed by adding the new
edge because there can be no directed feedback paths
from G2(Vg,Es) to G1(V1,El) which affect the
dominant path to u (this would result in a directed

If the edge e,, is found to be undirected
(“$?j=8 (U)) then the state of both nodes may
change, causing both nodes to reconsider their state.
This time the effects of the changes will only pro-
pagate through undirected edges or edges directed
outward.

Figure 1 shows an example of incremental edge
addition. When the top transistor turns on, its direc-
tion is found to be n i 4 n2 by comparing
s (tar)=dg with s (ns)=d,. Since the strength of
node n2 is not affected by this event - no further
action is taken.

(i)
H

1 m(L.dd)-

(ii)

Figure 1: Transistor turning on

If the resistance of the switching transistor were r = 1
instead of 2, it would ‘become a new single dominator
of n2, and all node strengths further down the path
would be reevaluated by applying the SHORT algo-
rithm from n2.

6 Incrementally Deleting an Edge

Incremental edge deletion due to a transistor
turning off is slightly more complicated because it
may cause one signal path to be broken, and another
path to override it at some other node. Furthermore,
when a path is broken, all signals which are further
down the path are, no longer valid, and even their
edge directions may no longer be valid. On the
other hand, if an edge eUv (directed u --u) which is
not a dominator of 21 is deleted, node 2) and all
nodes further down the path will not be affected at
all.

The problem then becomes, how to consistently
keep track of the dominators of each node. This is
solved by keeping, for each transistor output termi-
nal, a marker indicating whether or not it is dominat-
ing the output node, and a dominator-count for each
node. When a single dominator is removed from a
node, its previous signal is invalidated and the node
must find a new dominator. If none exists, the node
will remain at its old logic level, with a charged
strength proportional to its capacitance. All this is
built into the #(node) operation mentioned earlier.

H

(i)

(L,dlO)-

(ii)

(iii)

Figure 2: Transistor turning off

Figure 2 will be used to demonstrate the edge
deletion algorithm. In (i), the steady state is shown
before the transistor turns off. Node n 1 is driven to
a state <L,d s> by a single dominator, and node ns
is driven to <L,d,p by two dominators. When the
single dominator of n 1 is deleted, its state becomes
charged since no other transistors are directed into
the node. Both outgoing transistors are then

scheduled. Assume the top transistor runs first, it
determines that it wa8 a dominator of tap but not a
single dominator, so it decrements the dominator
count of r~z by one and returns (ii). Now the other
transistor runs, and this time it k a single dominator
of n2, SO the signal <L,de> is invalidated and ns
settles to its charged state <L,c a> (since there are
no other drivers present), which is then propagated
back to n i through both transistors as shown in (iii).

Consider the effect of having a third transistor
driving node n2. If its strength were weaker, it
would have a chance to become dominant when the
previous single winner is removed. This transistor
may have initially been directed outward from ns, in
which case it would run when n2 becomes charged
and determine that its direction is no longer valid -
duplicating the case shown in Figure 2(i). If it were
stronger, then the two parallel transistors would be
pointing the other way, and the transistor event dep-
icted would not entail any updates. If the second
source were equal in strength to the driver of n i,
then the two parallel transistors would be undirected
(having equal drain and source strengths) and the
transistor event shown would only require two
transistor updates and one node update.

6 Correctness and Complexity

Shortest-path updating algorithms like the one
described here have been studied extensively in con-
nection with routing problems in distributed packetr
switching network. A proof of correctness of the
updating procedure is given by Tajibnapis [ll] for the
case of equal edge costs. It is also shown there that
the algorithm remains correct even if edge events
occur while the effect of other events are still being
updated, and that the algorithm behaves correctly on
startup.

Jaffe and Moss [12] have shown that the updat-
ing procedure takes linear time if some order is
imposed during the update procedure. Such an order
is indeed imposed in our algorithm by the fact that
DDS transistors are only considered by the node they
are currently driving.

7 Unknown Handling

Proper handling of unknown signals at the gates
of transistors is necessary for correct simulation of
MOS VLSI. The over-pessimistic approach of
extended gate-level simulators [5], where an unknown
signal at the gate of a transistor always drives its
output to unknown, makes it impossible to correctly
simulate many important structures such as NOR
gates, PLAs etc. in the presence of unknown signals.

Bryant’s solution [2] is to distinguish between
definite paths, which only pass through an-transistors,
and indefinite paths, where some of the transistors on
the path may have an unknown gate state. Indefinite
paths can be blocked by stronger definite paths, or by
definite paths of the same strength which carry the

Paper 33.3
509

same signal level (high or low). The algorithms
presented so far can be extended to deal with unk-
nown signals in a similar way based on the following
two propositions which are given here without proof.

proposition 2 The SHORT algorithm can be extended
to find the shortest path from a set of m (>l)
sources (8 ,J ,...8, _ 1) to all other nodes simultane-
ously. m can be limited to two by combining alit high
sources and all low sources [9].

proposition 3: The signals propagated through the net-
work can be extended to consist of a definite com-
ponent and two indefinite components.

The propagation of generalized signals can be
shown to be identical to propagating strengths and
then comparing them as in Bryant’s approach,, with
the added benefit that the strength comparison
becomes part of the signal propagation action.

8 YthningSimuiation

The resi&ance of the strongest dominant path
from all signal sources is inherently embedded in the
signal strength at each node (this follows from the
definition of the 8 function). If the range of path
resistance is large enough, an RC delay constant for
each node can be formulated using this quantity. The
time constant corresponds to an RC-tree with no
side-branch capacitances, and produces less accurate
results for intermediate nodes [131.

This approximation, coupled with the
algorithm’s que operation, forms the basis of a

switch-level timing simulation mode in the LeimTM
Mixed-mode Digital and Analog Simulator [141. Since
Lsim also contains a circuitrlevel Timing Simulator
called ADEPT (151 as well as a SPICE-level analog
simulator, the switch-level algorithm is expected to
produce only crude first-order delay approximations,
where the emphasis is more on maximizing speed and
minimizing memory requirements than on detailed
waveform accuracy.

9 Mixed-Mode Simulation

The Lsim Mixed-Mode Analog and Digitol
Simulator consists of an extensible set of simulation
algorithms, all sharing a common infrastructure. All
algorithms (except for the SPICE-level analog simula-
tor) are based on cellular component models that
interact with node signal arbitrators which determine
the least common level at which the component
models can communicate.

The Dynamically Directed Switch model
described in this paper has the advantage of easily
and directly interfacing to other logic level com-
ponents in the circuit, since at any given time the
transistor mode1 appears to be a unidirectional device
to the node it is driving. Thus, the same node may
be driven by a behavioral model, a gate-level model

‘I’M Lsim is a trademark ol’ Silicon Compiler Systems

and .DDS models simultaneously and correctly deter-
mine its resulting state.

Mixing DDS level models with ADEPT com-
ponents is achieved by a state-variable mapping from
level-strength pairs to currentrconductance pairs using
Thevenin/Norton transformations. Finally, any
transistor level subcircuit can be toggled on the fly
between stitch and circuit simulation modes, making
it possible to simulate critical paths in context, run
analog subcircuits (e.g. sense amps, bootstrap drivers)
as part of a large logic simulation, and use the
switch-level algorithm to initialize a circuit for more
detailed circuit simulation.

10 Performance

The DDS model and algorithm have been used
to simulate a large variety of circuits. Cells and small
blocks are typically simulated interactively as they are
being designed, while full VLSI chips with hundreds
of thousands of transistors can be simulated in batch
mode for many clock cycles while the results are
automatically verified against those of a high-level
behavioral model.

Table 1: Lsim DDS Simulation Benchmarks

The table above shows simulation statistics for
a number of small to medium sized circuits. All
benchmarks were performed on a SUN 3/260 with 32
MByte of ,main memory. The mized chip entry
represents an actual chip where only two blocks
(including the data path) were simulated in transistor
mode with the other blocks simulated as behavioral
models. The Euents/Sec metric measures the number
of DDS transistor evaluations per CPU second.

When compared to global algorithms such as
MossimII, it is possible to come up with examples
where the algorithm will not provide any improve-
ment over the memoryless approach. However for a
typical channel graph and a typical mix of transistor
events, the total number of label-updates is found to
be significantly smaller using the algorithms presented
here than using the global approach.

As an example of the efficiency of incremental
updating in MOS circuits, consider the CMOS parity-
generator circuit in Figure 3 which is made up of
dynamic XOR gates with shared terms. The simula-
tion results for this circuit are shown in Figure 4
using the multi-mode capabilities of Lsim. First, the
circuit is run in ADEPT mode for several cycles, and
then all transistors are toggled into DDS mode. Note

Paper 33.3
510

the accuracy of the delay calculations in DDS mode
in comparison to the ADEPT waveforms. During the
evaluation phase, the signal elk goes high causing two
n-channel transistors to turn on and two p-channels
to turn off. When the n-channel transistors turn on,
a path to ground is created either to ODD- or to
EVEN,. Updating this path requires only one opera-
tion, because the signal is already ‘waiting’ at the
input of the enabling transistor.

11 Acknowledgements

I would like to thank Carl Christensen, Peter
Odryna, Kevin Nazareth, Mike Purnell, and Mehmet
Cirit whose contributions to the creation of the Lsim
Mixed-Mode simulation environment far exceed my
own.

References

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

C. Terman Simulation Tools J?W Digital LSI
Design , Ph.D. Diss., VLSI Memo no. 83-154,
Mass. Inst. of Tech. (September 1983).

R. Bryant ‘fA Switch Level Model and Simu-
lator for M&S Digital Systems,” IEEE Trawac-
tions on Computers o-33(February 1984).

R. Bryant, ‘Boolean Analysis of MOS Circuits
, ” IEEE Transactions on CAD CAD-6 (July 1987).

J. Hayes ‘Pseudo-Boolean Logic Circuits,”
IEEE Transa&otw on Computers *3!5(July 1986).

R. Bryant , ‘!A survey of Switch Level Algo-
rithms ,” IEEE Design El Test , (August 1987).

R. Sunblad and C. Svensson , ‘Fully Dynamic
Switch Level Simulation of CMOS Circuits,”
IEEE nansactions on CAD CAD-B(March 1987).

E. Denardo and B. Fox
Methods: Reaching, Pruning:

‘ShortestRoute
and Buckets,”

Operations Research 27(Jan 1979).

S. Even Graph Algorithms , Computer Sci-
ence Press (i979).

U. Pape, ‘Implementation & Efficiency of
Moore-Algorithms for the Shortest Route Prob-
lem ” Mathematical Programming 7 pp. 212-222
(1974).

R. Dial , F. Glover, D. Karney, and D. Kling-
man, ‘!A Computational Analysis of Alternative
Algorithms and Labeling Techniques for Find-
ing Shortest Path Trees,” Networks fl pp. 215248
(1979).

W. Tajibnapis, ‘!A Correctness Proof of a
Topology Information Maintenance Protocol for
a Distributed Coputer Network,” Communications
of the ACM 20 pp. 477-485 (July 1977).

J. Jaffe and F. Moss, ‘X Responsive Distri-
buted Routing Algorithm for Computer Net-
works,” IEEE Transactions on Communications
Vol. COM-30 pp. 1758-1762 (July 1982).

13. P. Penfield, Jr. and J. Rubinstein, ‘Signal Delay
in RC Tree Networks,” pp. 613-617 in Proceed-
ings of the 18th Design Automation Conference,
(1981).

14. P. Odryna, K. Nazareth, and C. Christensen,
“A Workstation-Based Mixed Mode Circuit
Simulator,” in Boceedings of the 2.9-d Design
Automation Conference, (1986).

15. P. Odryna and S. Nassif ‘The ADEPT Tim-
ing Simulation Algorithm,” bu1 Systems design,
(March 1986). -

ODD-

VDD

Figure 3: Parity Generator Circuit.

Figure 4: Multi-Mode Simulation Results.

Paper 33.3
511

