
Genetic Algorithms and Simulated Annealing:
A Marriage Proposal

Dan Adler
Tudor Investment Corp.,

One Liberty Plaza,
NY,NYlO006

adan@tudor.com

Abstract-Cenetic Algorithms (CA) and Slmulated
Annealing (SA) have emerged as the leadlng methodologies
for search and optimization problems in high dlmensional
spaces. Previous attempts at hybrkllzing these two algorithms
have been cumbersome and requlred major changes to both.
In this paper we propose a simple scheme of using
Simulated-Annealing Mutation (SAM) and Recombination
(SAR) as operators In a standard GA envlronment. The
operators use the SA stochastic acceptance function internally
to limit adverse moves. This is shown to solve two key prob-
lem In CA optimization: populations can be kept small, and
hlllcllmbing in the later phase of the search Is facilitated.
The Implementation of this algorithm withln an existlng CA
envlronment is shown to be trivlal, allowing the system to
operate as pure SA (or Iterated SA), pure CA, or In various
hybrid modes. Performance of the algorithm is tested on
various large-scale applicatlons, includlng DeJong's functions,
a 100-city travellng-salesman problem, and the optlmlzation
of weights In a feed-forward Neural Network. The hybrid
algorithm Is seen to improve on pure CA In two ways: better
solutions for a given number of evaluations, and more con-
sistency over many runs.

1. Introduction
Over the last decade, Genetic AIgorithms (GA) E13

have emerged as a leading tool for optimization of arbi-
trary functions and for guided search problems in high
dimensional spaces. GA's are typically comprised of two
types of operations: mutation and crossover which are
repeatedly applied to a population of chromosomes, each
of which encodes a possible solution to the given problem.
GA's have been successfully applied to many theoretical
optimization problems [2] and several [3] industrial appli-
cations.

Simulated Annealing (SA) [4] is another algorithm
which is popular in heuristic optimization. SA belongs to
a class of algorithms called probabilistic hill-climbing [5]
which dynamically alter the probability of accepting infe-
rior solutions. The SA algorithm is especially popular in
the field of VLSI design [6] where it has been successfully
applied to the optimization of extremely high-dimensional
problems such as placement and global routing of inter-
connect layers in V U 1 chips [7] which contain tens or

hundreds of thousah of parameters to be optimized.
Since neither of the two algorithms Seems to be

universally preferred for all problems, researchers have
often resorted to building a large battery of optimization
algorithms [81 and finding, through experimentation,
which tool best fits the problem at hand. This provides
the basic motivation for trying to merge GA and SA into a
single software module, which can be configured to run as
pure GA, pure SA (or iterated SA), as well as a variety of
hybrid modes.

2. A Framework for Comparison
A Genetic Algorithm may be specified as follows:

G A = (N p p * N g e n * n * f e v d s f s c ~ 1
where Npp is the number of elements in the population,
N,,, is the number of generations, Q is the set of opera-
tors and their probabilities, f is the evaluation or fitness
function, and fSe l is a reproduction selection rule. We am
not concerned here with the actual encoding of a solution
as a chromosome. We assume that the same encoding of
solutions can be used in the GA and the SA algorithm.
One possible implementation of a GA is as follows:

repeat N,,, times (
fitness-rank(pop,)
repeat Npop times {

s = select(pop,)
s2 = select(pop,)
op = op-select(S2)
PPg+1 + OP(S1. sz,

I
POP, + POP,+l

1

The fitness-rank function calls f e d to rank the whole
population for selection, and the select function uses f se ,
to select members of the population for reproduction.

Similarly, a Simulated Annealing algorithm might be
specified as follows:

SA ' W p p 9 . 5 . f c w l 9 q 1
where 2=To,T1, . . . , TK is the annealing schedule, f N o l is

0-7803-0999-5/93/$03.00 01993 IEEE 1104

mailto:adan@tudor.com

the evaluation function (which may be identical to the
function used by the GA to find the relative fitness of a
solution) and q is an exploration matrix. Each entry in the
matrix represents a transition probability qi, between two
possible solutions to the problem, defined as:

4.. 'J = P(s,+l=j I s ,=i) (2.1)
which is the probability of moving to solution j from
solution i at the current temperature. The algorithm
proceeds by generating solutions so,sl, . . . ,s,, ,... such
that a Markov chain is formed at each temperature level.
In most implementations of the SA algorithm Npp = 1.
The following pseudo-code fragment [6] is a template for
SA optimization:

T = To
for(k=O; k 4 ; k++) [

repeat (,

foreach s in pop, (
s' = mutatefs, T)
if (acceptts I , s , T)) pop, +1 t s
else Pop,+, +S

1
POP, POP,+,

1 until "local convergence"
T = adaptfTd

1
The mutate function in SA optimization is an interpreta-
tion of the probability distribution P in equation (2.1). It
represents the joint multivariate distribution of all possible
states of the system, which, based on arguments from sta-
tistical physics [4] was originally taken to be the Bolrzman
Distribution. In the case of discrete parameters (combina-
torial optimization), most authors [63 pay no attention to
the distribution properties of the mutation (or perturbation)
operations. The candidate solution, s f is obtained from s
by a problem-specific heuristic. For the continuous case, s'
is typically obtained as s + As where As is generated
from an underlying distribution based on the current tem-
perature. Classic SA (CSA) typically uses the Boltzman
distribution, mentioned earlier, to generate As, whereas
Fast SA (FSA) uses a multivariate Cauchy [9] distribu-
tion.

The underlying distribution places a lower bound
[lo] on the annealing schedule: T should change no faster
than T,,/ln(k) for CSA and T& for FSA, and the system
must reach a steady-state between adaptations. This is
required to guarantee ergodic sampling of the parameter
space. In homogeneous SA's-an explicit convergence
test is applied (resulting in a series of Markov chains-
each representing a single temperature), whereas in in-
homogeneous SA's the inner loop might simply be exe-
cuted some fixed number of times. The asymptotic conver-
gence of the latter case is proved [lo] based on the theory

of in-homogeneous Markov chains, where the exploration
matrix varies with temperature.

The most important, and intuitively appealing, aspect
of the SA algorithms is the conditional acceptance func-
tion, where the probability of accepting an inferior solu-
tion s f over s is given by: exp(-Af/T) , where T is the
current temperature and Af is the difference between
fcvd(s') and f c d (s) in the up-hill direction (for a global
minimum problem). This allows the SA algorithm to
escape from local extrema at the early stages of the
search, and to efficiently hill-climb as the temperature
approaches zero.

3. Limitations of pure GA's
While GA's are very popular as arbitrary function

optimizers over low-dimensional spaces, they are not as
popular as SA in the VLSI CAD community. This is
mainly due to the GA's need to maintain a large popula-
tion of solutions. For example, each solution in a VLSI
place-and-route application [7] is an encoding of the place-
ment of all cells on a chip and the routing of all intercon-
nect on the chip. This may consume mega-bytes of
memory for the encoding of a single solution. It would be
impractical to manipulate a large population of candidate
solutions. The same may be true when using a GA to
optimize the weights in a large Neural Network, or to
optimize the structure of the network.

Another problem frequently found in GA optimiza-
tion is premature convergence. This is typically the result
of the extreme reliance on crossover. The dominance of
crossover can result in stagnation as the population
becomes more homogeneous, and the mutation rate is too
low to move the search to Gther areas.

Another well-known problem with GA optimizers is
that they are quite poor at hill-climbing. This manifests
itself in low accuracy in many real-valued problems. The
main reason for this is, again, the extremely low
mutation-rate, typically [2] one to two orders of magnitude
lower than the crossover rate.

Ackley [l 11 has addressed this problem by develop-
ing SIGH, a connectionist algorithm that performs a form
of iterated stochastic hill-climbing in a genetically-encoded
environment. His analysis shows that the hill-climbing
component can significantly improve the speed and accu-
racy of the search.

4. Previous Work on Merging GA with SA
Sirag and Weisser 1121 have proposed a thermo-

dynamic genetic operator that incorporates an annealing
schedule into the control loop of a GA. In this scheme, the
probability of mutation is given by exp(-O,,,/T), where e,,,
is a constant threshold value, and T is the current tempera-
ture. Similarly, other operators have their own threshold

1105

values. This method uses the annealing schedule to control
the probability of applying an operator rather than the pro-
bability of accepting the mutated solution based on its
merit. Thus, both the GA and the SA algorithms used are
non-standard, and do not retain their separate identities.
The above work falls into the category of adapting opera-
tor probabilities with time. More recent work on this sub-
ject was presented by Davis [13] where operator probabili-
ties evolve based on assignment of credit from previous
generations. These approaches do not solve the basic need
of the GA to move in large leaps early on (to avoid stag-
nation), and to move in small leaps later on (to allow hill-
clim bing).

Controlling the magnitude of mutation is a central
theme in Evolution Straegies [141 (ES). This class of
algorithms can be classified as a real-valued GA, where
Davis' heuristic "creep" operators [31 are replaced by
SA-flavored Gaussian mutations As = N(O,o), and o is
dynamically altered based on the population fitness. The
algorithm is shown 1151 to outperform standard GA's in
many cases, and has been extended to use recombination
operators as well as mutations.

A different approach called SAGA [161 separates
each generation into two stages: a GA stage and an SA
stage. First, the GA is used to evolve a set of solutions,
and then a modified SA is applied to further refine the
solution. Both the GA and the SA algorithms used in
SAGA are extensively modified and non-standard.

Ackley's work [ll] mentioned earlier, can also be
viewed as a hybridization of GA with SA-with a connec-
tionist twist. The algorithm consists of processing units
which perform a stochastic acceptance function over
binary-coded input vectors to generate reinforcement or
inhibition signals to other units. Ackley demonstrates that
the algorithm out-performs both GA and SA on a large
variety of problems. However, it is very difficult to iden-
tify the exact relation to either algorithm-and the com-
ponents cannot be separated.

The current work tries to merge SA and GA in a
more standard setting. Each algorithm maintains its own
identity, and each can be viewed as an extension of the
other. We are not concemed here with the specific form
of the mutation or recombination operators. Rather, we
focus on a method that can be used either with real-valued
mutations such as "creep", CSA, FSA or ES mutations, or
standard bit-string mutations and recombinations-
although, we will show later that there are theoretical rea-
sons to prefer some forms over others.

Our goal is to relieve some of the pressure from the
genetic selection mechanism and transfer some of the
selectivity to the operators themselves, thus allowing the
algorithm to adjust its degree of selectivity as the search
progresses. This allows us to use a very high mutation-

rate-which improves the hill-climbing ability of the algo-
rithm, and reduces the chances of "getting stuck" at local
extrema. We use the classic interpretation of SA as adapt-
ing the probability of accepting an inferior solution, and
consider the consequences of extending the standard GA
operators by using the SA accept() function inside the
operators.

5. Simulated-Annealing Operators: SAM and SAR
The method we have used to combine SA with GA

is by replacing all (or some) of the mutation and recombi-
nation operators by SA operators: S A M (SA-Mutation) and
S A R (SA-Recombination). The S A M operator works
exactly like a standard mutation operator it gets a solution
as input, mutates it and returns a solution as output. The
difference is that internally, the SA operator can call the
evaluation function, and use the result to decide whether
to accept the mutated solution, or just stay with the previ-
ous solution:

SAMs, TI {
s' = mutate(s, T)
if (accept(s '. s , T)) return s '
else return s

1
The function accept, besides applying the standard SA
acceptance condition, does two additional things: it sets
s'.eval to the value of the evaluation function feYP,(s'),
and sets a flag s'.needs-eval to 0 - so that thejitness-rank
function will not call the evaluation function again for this
solution. This guarantees that the hybrid algorithm will
call the evaluation function the same number of times as
the pure GA, for a given Npp and N,,,. The annealing
temperature is lowered in an in-homogeneous way:
between generations. Thus, every one (or more) genera-
tions, the temperature is lowered, making the SA operators
more selective about the mutations it accepts. The SAR
operator is very similar. First the crossover is applied, and
then each of the children is compared to the best of the
two parents for acceptance.

As GA operators, SAM and S A R can completely
replace the existing operators, or coexist with them. This
can be controlled by their relative probabilities of selec-
tion. To understand the effects of this scheme it is useful
to consider some extreme cases. First, note that setting
the probability of the SAWSAR operator to 0 leaves us
with the standard GA, as does disabling the annealing
schedule. Second, note that setting all the other operator
probabilities to zero or, altematively, disabling the selec-
tion mechanism, leaves us with a standard SA algorithm.
With Npop > 1, this becomes an iterated SA algorithm.

The interesting property of this implementation is
that between these extreme cases, we can easily and con-

1106

tinuously get a variety of intermediate situations. For prac-
tical purposes, we consider each separate component of the
algorithm as a mere heuristic, which can be mixed-and-
matched with other heuristics to produce a hybrid algo-
rithm suited to a specific problem (since both GA’s and
SA’s are ultimutely just heuristics due to finite computa-
tion times). However, with some restrictions, the resulting
hybrid algorithm can be made to satisfy all the theoretical
assumptions of each of the two underlying algorithms,
thereby avoiding the need to develop a new theoretical
foundation.

6. Analysis of Hybrid Algorithm
The S A M / S A R operators, while trivial to implement,

offer some important improvements over the standard GA
algorithm. First and foremost, these operators bring hill-
climbing into the realm of GA’s without any explicit
cross-generational breeding as in Eshelman’s CHC 1171
algorithm. As the temperature decreases, the operators will
inevitably only pass through small adverse changes-while
freely accepting improvements. This allows us to set the
S A M selection probability to be very high. There is no
need to make it as small as in standard GA’s.

An interesting property of the merged algorithm is
the interaction between the GA reproduction-selection
mechanism and the SA algorithm carried out by the opera-
tors. From the point of view of the GA, the SAWSAR
operators behave the same as their non-SA counterparts.
Nothing in the analysis of schemata presupposes any
specific behavior on the part of the operators. So, clearly,
the GA’s convergence properties are not adversely
affected.

The more interesting point of view is from the SA’s
side. Instead of evolving a single solution, it is now deal-
ing with a collection of related solutions. Furthermore,
these solutions are presented to the SAWSAR operators
based on the fitness selection mechanism. Each solution is
presented to the operators several times, based on its rela-
tive fitness. This defines a neighborhood around each such
solution. The size of the neighborhood varies according to
its average fitness. The concept of an optimal neighbor-
hood around a solution is a central problem in the SA
literature [18] and one of the heuristics for solving it [19]
is based on a mechanism similar to fitness selection. Thus,
the selection mechanism of the GA guides the SA opera-
tors into working within neighborhoods of useful solutions,
and lets the operators search those neighborhoods
efficiently.

The convergence properties of the SA operators are
not influenced by the GA control loop around them. Each
member of the current generation is created from one or
more of the previous generation’s solutions-so the Mar-
kov chain is not broken. The case for recombination is not

quite so straightforward to analyze since the Markov pro-
cess must now be defined over pairs of states-but the
principle is the same. The formal analysis of the merged
algorithm is similar to that of a parallel SA algorithm [201
that represents Np,, independent periodically-interacting
searches. In this case the searches are much less indepen-
dent both the GA selection mechanism and the recombi-
nation operations improve the efficiency of the search.

Since the convergence properties of the SA algo-
rithm are closely tied to both the annealing schedule and
the method of mutation-the hybrid algorithm is better
geared towards a real-valued representation. Thus far, most
implementations of real-valued GA’s (with the exception
of Evolution Strategies) have used heuristic mutation
operators inspired by the more traditional bit-mutations.
The merging of SA with GA in the current algorithm sug-
gests that the exact form of mutation is important, and
may have a dramatic effect on how the algorithm navi-
gates through the problem-space.

For example, FSA, mentioned earlier, uses an under-
lying Cauchy distribution. Since a multivariate Cauchy
cannot be generated by independently varying each dimen-
sion as a univariate Cauchy distribution, the mutation must
consider all dimensions at once. One way to derive a Cau-
chy mutation operation [21] is by first generating an n-
dimensional uniform vector and multiplying it by 4 5 , where X-Betag+) is a scalar random vari-
able, and by aT,, a multiple of the current temperature.

A final point to consider is population size. The
merged algorithm can work with any size population. A
small population will accentuate the SA properties of the
algorithm (with the added benefit of crossover), while a
large population will accentuate the exponential preference
for better schemata.

2 2

7. Performance
We have compared the proposed algorithm against a

standard GA on a large variety of problems. The results
given below were generated using the test suite of objec-
tive functions provided by Baeck [22] as part of the
GENEsYs package (using his C-code for the functions, but
not for the algorithms). Since we are interested in how the
SAWSAR operators can enhance an existing GA, we did
not run both algorithms to convergence. Rather, we
decided a-priori on a number of generations, and ran both
algorithms for the same N,,,, which results in the same
number of objective-function evaluations. We stored the
best solution at the end of each run, and averaged them
over 50 different runs. Since we are interested in large
problems, we intentionally set the population to a low
number (3). The dimension of the problems was kept high,
mostly at 50 (a notable exception is F10 which is a 100-

1107

city Traveling Salesman Problem). We only ran the func-
tions for which the true minimum solution is given in [22]
so that we can compare how far both algorithms are from
the global optimum.

The annealing schedule used for SAR/SAM was
linear k-period annealing [lo] based on the number of
generation the algorithm is asked to run, with T o set as
100 times the worst solution in the first generation. The
probabilities for S A M and S A R were set such that recom-
bination occurs twice as often as mutation. In the pure GA
version, recombination was more than an order of magni-
tude more likely than mutation. In all experiments we used
an elitist strategy, copying the best member of the popula-
tion to the next generation.

F10

F12

F15

F18

FS

F6

100

50

50

4

0

0

0

1

0

-
-
-
-

0

31.3 30.2

0.9 0.9 10"

380.6 264.5 265.6 155.5

53.3 I 28.7 1 43.9 I 7.9

21285 64400.0 72L15.0 56865.0 4441.0 8
N~~ = 3, N~~~ = 5000. (for F10 N ~ . = 1oooO)

p and U are calculated over 50 runs.

As expected, the hybrid algorithm dramatically out-
performs pure GA when there are hills to be climbed, e.g.
F1 (Di2). F15 (mi2). On F3, which is a step-function,
both algorithms are still equally far from the solution. F4
is (Gi4 + rmd(O,l) , which means its minimum is dis-
guised by noise. F5 is Shekel's Foxholes (only defined for
2 dimensions).

In almost all cases, the standard deviation of the
solutions was considerably tighter for the hybrid algorithm.
While the pure GA occasionally finds better solutions, the
hybrid algorithm is more consistent. For example, on F12,
which is the Hamming distance from the zero vector, the
hybrid solution is worse than the pure GA, but the stan-
dard deviation is an order of magnitude better.

F10 is Krolak's 100-city Traveling-Salesman Prob-
lem. This is by far the largest problem in the suite. In
this case, clearly, the number of iterations performed was
not high enough to approach the optimum-but this is
characteristic of many real-life problems where there is no
hint as to how many iterations are "enough". In this case,
after loo00 generations, the relative error of the hybrid
solution is 35% better than that of the pure GA, with a
30% lower standard deviation over 50 runs.

As a more realistic example, we considered the
problem of training a feed-forward Neural network to
predict the chaotic logistic map: = 4x,(l-x,). The
network has two inputs: x, and x,-~, one fully-connected
hidden-layer of 10 sigmoidal units, and one output: x,+~.
This involves optimizing about 50 weights. Backpropoga-
tion is able to optimize the weights in 450 iterations
through 250 input vectors, achieving an out-of-sample R 2
of 0.98.

The following table shows the results of using GA
with and without the SAWSAR algorithms to optimize the
weights. The objective function in this case is the mean-
squared-error of running the network forward with the
given weights, compared to the true output for the input
sample. After the learning phase, we ran the network for-
ward on an out-of-sample set of 750 vectors.

TABLE 11
Out-of-sample R for Neural Network. Npp = 3.

0.88 0.95
0.98

In this case, the hybrid algorithm's hill-climbing
ability gives it a strong advantage over the pure GA. After
250 generations, which is 750 evaluations, the hybrid
algorithm's out-of-sample performance is an order of mag-
nitude better than the pure GA. The advantage of using the
GA algorithm with SAWSAR over Backpropagation is
that non-differentiable error measures and activation func-
tions can be used.

8. Conclusions
We have presented a method of hybridizing GA's

with SA's by replacing the siandard mutation and recom-
bination operators by their SA versions: SAM and SAR.
These operators perform the classic SA acceptance func-
tion, and can otherwise be made identical to the standard
operators. The hybrid algorithm can be configured to
operate as pure GA, pure SA (or iterated SA), as well as a

1108

. .I

variety of hybrid modes.
The analysis has shown that this results in a hybrid

algorithm which preserves the advantages of GA while
emphasizing hillclimbing at the later stages of the search,
thus improving its accuracy on many real-valued problems.
This was found to be especially true for high dimensional
problems, using a small population of solutions (3-5).
Even in cases where the accuracy is not improved over a
standard GA, the hybrid algorithm exhibits more con-
sistency across multiple runs.

The analysis also suggests that for real-valued GA’s,
there is much to be gained by using CSA/FSA mutations
instead of simple heuristic operators. These operators are
known to improve the convergence and speed of pure SA,
and should be coupled with an appropriate annealing
schedule.

We believe this work may contribute to making
GA’s more popular in VLSI place-and-route problems, and
in optimization of weights in large Neural networks that
use non-standard error measures.

References

1.

2.

3.

4.

5 .

6.

7.

8.

9.

10.

11.

John Holland. Adaptation in Natural and Artificial Sys-
tems, University of Michigan Press, Ann Arbor, 1975.
D. Goldberg, Genetic Algorithms in Search, Optimization
and Machine Learning, Addison Wesley. 1989.
Lamence Davis, Handbook of Genetic Algorithm, Van
Nostrand Reinhold. New York, 1991.
S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization
by Simulated Annealing.” in Science, vol. 220. pp. 671-
680. May, 1983.
F. Romeo and A. Sangiovanni-Vincentelli. Probabilistic
Hill-Climbing Algorithms: Properties and Applicatwm,
Computer Science Press, Chapel Hill. NC, 1985.
S. Nahar. S. Sahni. and E. Shragowitz. “Simulated
Annealing and Combinatorial Optimization,” in Proc. of
the 23th Design Automation Cog,. pp. 293-299. June,
1986.
C. Sechen and A. Sangiovanni-Vincentelli, “Tim-
berWolf3.2: A New Standard Cell Placement and Global
Routing Package,” in Proc. of the 23th Design Automation
CO nf., pp. 432-439, June, 1986.
M. Bramlette and E. Bouchard, “Genetic algorithms in
Parametric Design on Aircraft,” in Handbook of Genetic
Algorithms. pp. 109-123. Van Nostrand Reinhold. New
York, 1991.
H. Szu and R. Hartley, “Fast Simulated Annealing,” in
Physics Letrers A. vol. 122(3-4). pp. 157-162, 1987.
P. van Laarhoven and E. Aarts, Simulated Annealing:
Theory and Applicatwm, Kluwer Academic, 1987.
D. Ackley, Stochastic Iterated Genetic Hillclimbing, Ph.D.
Diss., Dept.Comp. Sc. CMU-CS-87-107, Camegie Mellon
University,, March 1987.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

1109

D. Sirag and P. Weisser. “Toward a Unified Thermo-
dynamic Genetic Operator,” in Proc. cf the 2nd 1 n t t ~ ~ -
tional CO& on Genetic Algorithms, pp. 116-122, 1987.
L. Davis, “Adapting Operator Probabilities in Genetic
Algorithms,” in Proc. of the 3rd International Cog. on
Genetic Algorithms, pp. 61-70, 1989.
T. Beeck, F. Hoffmeister, and H.P. Schwefel. “A survey
of Evolutionary Strategies.” in Proc. of the 4th 1 n t t ~ ~ -
tional Cot$ on Genetic Algorithms, pp. 2-9, 1990.
D. Fogel, System Identification Through Simulated Evolu-
tion, Ginn Press, 1991.
D. Brown, C. Huntley, and A. Spillane, “A Parallel
Genetic Heuristic for the Quadratic Assignment Problem,”
in Proc. of the 3rd International CO$ on Genetic Algo-
rithms, pp. 406-415, 1989.
L. Eshelman, “The CHC Adaptive Search Algorithm,” in
Follndatwm of Genetic Algorithms, ed. G. Rawlins. pp.
265-283, Morgan Kaufman , 1991.
L. Goldstein and M. Waterman, “Neighborhood Size in
the Simulated Annealing Algorithm,” in Simulated
Annealing (SA) and Optimization: Modern algorithms with
Applicatwm, ed. M. Johnson, pp. 409-424, American Sci-
ences Press, 1988.
C. Tovey, “Simulated Simulated-Annealing,” in Simulated
Annealing (SA) and Optimization: Modern algorithms with
Applicatiom, ed. M. Johnson, pp. 389-408, American Sci-
ences Press, 1988.
R. Azencott, Simulated hnealing Parallelizatwn Tech-
niques, Wiley. 1992.
L. Devroye, Non Unijorm Random Variate Generation,
Springer-Varlag, New York, 1986.
T. Back, A User’s Guide to GENEsYs 1.0, University of
Dortmund. Dept. of c s , (email:
baeck@lsl 1 .informatik.uni-dortmund.de), July. 1992.

