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Abstract-Cenetic Algorithms (CA) and Slmulated 
Annealing (SA) have emerged as the leadlng methodologies 
for search and optimization problems in high dlmensional 
spaces. Previous attempts at  hybrkllzing these two algorithms 
have been cumbersome and requlred major changes to both. 
In this paper we propose a simple scheme of using 
Simulated-Annealing Mutation (SAM) and Recombination 
(SAR) as operators In a standard GA envlronment. The 
operators use the SA stochastic acceptance function internally 
to limit adverse moves. This is shown to solve two key prob- 
lem In CA optimization: populations can be kept small, and 
hlllcllmbing in the later phase of the search Is facilitated. 
The Implementation of this algorithm withln an existlng CA 
envlronment is shown to be trivlal, allowing the system to 
operate as pure SA (or Iterated SA), pure CA, or In various 
hybrid modes. Performance of the algorithm is tested on 
various large-scale applicatlons, includlng DeJong's functions, 
a 100-city travellng-salesman problem, and the optlmlzation 
of weights In a feed-forward Neural Network. The hybrid 
algorithm Is seen to improve on pure CA In two ways: better 
solutions for a given number of evaluations, and more con- 
sistency over many runs. 

1. Introduction 
Over the last decade, Genetic AIgorithms (GA) E13 

have emerged as a leading tool for optimization of arbi- 
trary functions and for guided search problems in high 
dimensional spaces. GA's are typically comprised of two 
types of operations: mutation and crossover which are 
repeatedly applied to a population of chromosomes, each 
of which encodes a possible solution to the given problem. 
GA's have been successfully applied to many theoretical 
optimization problems [2] and several [3] industrial appli- 
cations. 

Simulated Annealing (SA) [4] is another algorithm 
which is popular in heuristic optimization. SA belongs to 
a class of algorithms called probabilistic hill-climbing [5] 
which dynamically alter the probability of accepting infe- 
rior solutions. The SA algorithm is especially popular in 
the field of VLSI design [6] where it has been successfully 
applied to the optimization of extremely high-dimensional 
problems such as placement and global routing of inter- 
connect layers in V U 1  chips [7] which contain tens or 

hundreds of thousah of parameters to be optimized. 
Since neither of the two algorithms Seems to be 

universally preferred for all problems, researchers have 
often resorted to building a large battery of optimization 
algorithms [81 and finding, through experimentation, 
which tool best fits the problem at hand. This provides 
the basic motivation for trying to merge GA and SA into a 
single software module, which can be configured to run as 
pure GA, pure SA (or iterated SA), as well as a variety of 
hybrid modes. 

2. A Framework for Comparison 
A Genetic Algorithm may be specified as follows: 

G A = ( N p p  * N g e n  * n * f e v d  s f s c ~  1 
where Npp is the number of elements in the population, 
N,,, is the number of generations, Q is the set of opera- 
tors and their probabilities, f is the evaluation or fitness 
function, and fSe l  is a reproduction selection rule. We am 
not concerned here with the actual encoding of a solution 
as a chromosome. We assume that the same encoding of 
solutions can be used in the GA and the SA algorithm. 
One possible implementation of a GA is as follows: 

repeat N,,, times ( 
fitness-rank(pop, ) 
repeat Npop times { 

s = select(pop, ) 
s2 = select(pop,) 
op = op-select(S2) 
PPg+1 + OP(S1. sz, 

I 
POP, + POP,+l 

1 

The fitness-rank function calls f e d  to rank the whole 
population for selection, and the select function uses f se ,  
to select members of the population for reproduction. 

Similarly, a Simulated Annealing algorithm might be 
specified as follows: 

SA ' W p p  9 . 5 . f c w l  9 q  1 
where 2=To,T1, . . . , TK is the annealing schedule, f N o l  is 
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the evaluation function (which may be identical to the 
function used by the GA to find the relative fitness of a 
solution) and q is an exploration matrix. Each entry in the 
matrix represents a transition probability qi, between two 
possible solutions to the problem, defined as: 

4.. 'J = P(s,+l=j I s ,=i)  (2.1) 
which is the probability of moving to solution j from 
solution i at the current temperature. The algorithm 
proceeds by generating solutions so,sl, . . . ,s,, ,... such 
that a Markov chain is formed at each temperature level. 
In most implementations of the SA algorithm Npp = 1. 
The following pseudo-code fragment [6] is a template for 
SA optimization: 

T = To 
for(k=O; k 4 ;  k++) [ 

repeat ( , 

foreach s in pop, ( 
s' = mutatefs, T)  
if (acceptts I ,  s , T))  pop, +1 t s  
else Pop,+, +S 

1 
POP, POP,+, 

1 until "local convergence" 
T = adaptfTd 

1 
The mutate function in SA optimization is an interpreta- 
tion of the probability distribution P in equation (2.1). It 
represents the joint multivariate distribution of all possible 
states of the system, which, based on arguments from sta- 
tistical physics [4] was originally taken to be the Bolrzman 
Distribution. In the case of discrete parameters (combina- 
torial optimization), most authors [63 pay no attention to 
the distribution properties of the mutation (or perturbation) 
operations. The candidate solution, s f  is obtained from s 
by a problem-specific heuristic. For the continuous case, s' 
is typically obtained as s + As where As is generated 
from an underlying distribution based on the current tem- 
perature. Classic SA (CSA) typically uses the Boltzman 
distribution, mentioned earlier, to generate As, whereas 
Fast SA (FSA) uses a multivariate Cauchy [9] distribu- 
tion. 

The underlying distribution places a lower bound 
[lo] on the annealing schedule: T should change no faster 
than T,,/ln(k) for CSA and T& for FSA, and the system 
must reach a steady-state between adaptations. This is 
required to guarantee ergodic sampling of the parameter 
space. In homogeneous SA's-an explicit convergence 
test is applied (resulting in a series of Markov chains- 
each representing a single temperature), whereas in in- 
homogeneous SA's the inner loop might simply be exe- 
cuted some fixed number of times. The asymptotic conver- 
gence of the latter case is proved [lo] based on the theory 

of in-homogeneous Markov chains, where the exploration 
matrix varies with temperature. 

The most important, and intuitively appealing, aspect 
of the SA algorithms is the conditional acceptance func- 
tion, where the probability of accepting an inferior solu- 
tion s f  over s is given by: exp(-Af/T) ,  where T is the 
current temperature and Af is the difference between 
fcvd(s')  and f c d ( s )  in the up-hill direction (for a global 
minimum problem). This allows the SA algorithm to 
escape from local extrema at the early stages of the 
search, and to efficiently hill-climb as the temperature 
approaches zero. 

3. Limitations of pure GA's 
While GA's are very popular as arbitrary function 

optimizers over low-dimensional spaces, they are not as 
popular as SA in the VLSI CAD community. This is 
mainly due to the GA's need to maintain a large popula- 
tion of solutions. For example, each solution in a VLSI 
place-and-route application [7] is an encoding of the place- 
ment of all cells on a chip and the routing of all intercon- 
nect on the chip. This may consume mega-bytes of 
memory for the encoding of a single solution. It would be 
impractical to manipulate a large population of candidate 
solutions. The same may be true when using a GA to 
optimize the weights in a large Neural Network, or to 
optimize the structure of the network. 

Another problem frequently found in GA optimiza- 
tion is premature convergence. This is typically the result 
of the extreme reliance on crossover. The dominance of 
crossover can result in stagnation as the population 
becomes more homogeneous, and the mutation rate is too 
low to move the search to Gther areas. 

Another well-known problem with GA optimizers is 
that they are quite poor at hill-climbing. This manifests 
itself in low accuracy in many real-valued problems. The 
main reason for this is, again, the extremely low 
mutation-rate, typically [2] one to two orders of magnitude 
lower than the crossover rate. 

Ackley [l  11 has addressed this problem by develop- 
ing SIGH, a connectionist algorithm that performs a form 
of iterated stochastic hill-climbing in a genetically-encoded 
environment. His analysis shows that the hill-climbing 
component can significantly improve the speed and accu- 
racy of the search. 

4. Previous Work on Merging GA with SA 
Sirag and Weisser 1121 have proposed a thermo- 

dynamic genetic operator that incorporates an annealing 
schedule into the control loop of a GA. In this scheme, the 
probability of mutation is given by exp(-O,,,/T), where e,,, 
is a constant threshold value, and T is the current tempera- 
ture. Similarly, other operators have their own threshold 
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values. This method uses the annealing schedule to control 
the probability of applying an operator rather than the pro- 
bability of accepting the mutated solution based on its 
merit. Thus, both the GA and the SA algorithms used are 
non-standard, and do not retain their separate identities. 
The above work falls into the category of adapting opera- 
tor probabilities with time. More recent work on this sub- 
ject was presented by Davis [13] where operator probabili- 
ties evolve based on assignment of credit from previous 
generations. These approaches do not solve the basic need 
of the GA to move in large leaps early on (to avoid stag- 
nation), and to move in small leaps later on (to allow hill- 
clim bing). 

Controlling the magnitude of mutation is a central 
theme in Evolution Straegies [141 (ES). This class of 
algorithms can be classified as a real-valued GA, where 
Davis' heuristic "creep" operators [31 are replaced by 
SA-flavored Gaussian mutations As = N(O,o),  and o is 
dynamically altered based on the population fitness. The 
algorithm is shown 1151 to outperform standard GA's in 
many cases, and has been extended to use recombination 
operators as well as mutations. 

A different approach called SAGA [161 separates 
each generation into two stages: a GA stage and an SA 
stage. First, the GA is used to evolve a set of solutions, 
and then a modified SA is applied to further refine the 
solution. Both the GA and the SA algorithms used in 
SAGA are extensively modified and non-standard. 

Ackley's work [ll] mentioned earlier, can also be 
viewed as a hybridization of GA with SA-with a connec- 
tionist twist. The algorithm consists of processing units 
which perform a stochastic acceptance function over 
binary-coded input vectors to generate reinforcement or 
inhibition signals to other units. Ackley demonstrates that 
the algorithm out-performs both GA and SA on a large 
variety of problems. However, it is very difficult to iden- 
tify the exact relation to either algorithm-and the com- 
ponents cannot be separated. 

The current work tries to merge SA and GA in a 
more standard setting. Each algorithm maintains its own 
identity, and each can be viewed as an extension of the 
other. We are not concemed here with the specific form 
of the mutation or recombination operators. Rather, we 
focus on a method that can be used either with real-valued 
mutations such as "creep", CSA, FSA or ES mutations, or 
standard bit-string mutations and recombinations- 
although, we will show later that there are theoretical rea- 
sons to prefer some forms over others. 

Our goal is to relieve some of the pressure from the 
genetic selection mechanism and transfer some of the 
selectivity to the operators themselves, thus allowing the 
algorithm to adjust its degree of selectivity as the search 
progresses. This allows us to use a very high mutation- 

rate-which improves the hill-climbing ability of the algo- 
rithm, and reduces the chances of "getting stuck" at local 
extrema. We use the classic interpretation of SA as adapt- 
ing the probability of accepting an inferior solution, and 
consider the consequences of extending the standard GA 
operators by using the SA accept() function inside the 
operators. 

5. Simulated-Annealing Operators: SAM and SAR 
The method we have used to combine SA with GA 

is by replacing all (or some) of the mutation and recombi- 
nation operators by SA operators: S A M  (SA-Mutation) and 
S A R  (SA-Recombination). The S A M  operator works 
exactly like a standard mutation operator it gets a solution 
as input, mutates it and returns a solution as output. The 
difference is that internally, the SA operator can call the 
evaluation function, and use the result to decide whether 
to accept the mutated solution, or just stay with the previ- 
ous solution: 

SAMs, TI { 
s'  = mutate(s, T)  
if (accept(s '. s , T)) return s ' 
else return s 

1 
The function accept, besides applying the standard SA 
acceptance condition, does two additional things: it sets 
s'.eval to the value of the evaluation function feYP,(s'), 
and sets a flag s'.needs-eval to 0 - so that thejitness-rank 
function will not call the evaluation function again for this 
solution. This guarantees that the hybrid algorithm will 
call the evaluation function the same number of times as 
the pure GA, for a given Npp and N,,,. The annealing 
temperature is lowered in an in-homogeneous way: 
between generations. Thus, every one (or more) genera- 
tions, the temperature is lowered, making the SA operators 
more selective about the mutations it accepts. The SAR 
operator is very similar. First the crossover is applied, and 
then each of the children is compared to the best of the 
two parents for acceptance. 

As GA operators, SAM and S A R  can completely 
replace the existing operators, or coexist with them. This 
can be controlled by their relative probabilities of selec- 
tion. To understand the effects of this scheme it is useful 
to consider some extreme cases. First, note that setting 
the probability of the SAWSAR operator to 0 leaves us 
with the standard GA, as does disabling the annealing 
schedule. Second, note that setting all the other operator 
probabilities to zero or, altematively, disabling the selec- 
tion mechanism, leaves us with a standard SA algorithm. 
With Npop > 1, this becomes an iterated SA algorithm. 

The interesting property of this implementation is 
that between these extreme cases, we can easily and con- 
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tinuously get a variety of intermediate situations. For prac- 
tical purposes, we consider each separate component of the 
algorithm as a mere heuristic, which can be mixed-and- 
matched with other heuristics to produce a hybrid algo- 
rithm suited to a specific problem (since both GA’s and 
SA’s are ultimutely just heuristics due to finite computa- 
tion times). However, with some restrictions, the resulting 
hybrid algorithm can be made to satisfy all the theoretical 
assumptions of each of the two underlying algorithms, 
thereby avoiding the need to develop a new theoretical 
foundation. 

6. Analysis of Hybrid Algorithm 
The S A M / S A R  operators, while trivial to implement, 

offer some important improvements over the standard GA 
algorithm. First and foremost, these operators bring hill- 
climbing into the realm of GA’s without any explicit 
cross-generational breeding as in Eshelman’s CHC 1171 
algorithm. As the temperature decreases, the operators will 
inevitably only pass through small adverse changes-while 
freely accepting improvements. This allows us to set the 
S A M  selection probability to be very high. There is no 
need to make it as small as in standard GA’s. 

An interesting property of the merged algorithm is 
the interaction between the GA reproduction-selection 
mechanism and the SA algorithm carried out by the opera- 
tors. From the point of view of the GA, the SAWSAR 
operators behave the same as their non-SA counterparts. 
Nothing in the analysis of schemata presupposes any 
specific behavior on the part of the operators. So, clearly, 
the GA’s convergence properties are not adversely 
affected. 

The more interesting point of view is from the SA’s 
side. Instead of evolving a single solution, it is now deal- 
ing with a collection of related solutions. Furthermore, 
these solutions are presented to the SAWSAR operators 
based on the fitness selection mechanism. Each solution is 
presented to the operators several times, based on its rela- 
tive fitness. This defines a neighborhood around each such 
solution. The size of the neighborhood varies according to 
its average fitness. The concept of an optimal neighbor- 
hood around a solution is a central problem in the SA 
literature [18] and one of the heuristics for solving it [19] 
is based on a mechanism similar to fitness selection. Thus, 
the selection mechanism of the GA guides the SA opera- 
tors into working within neighborhoods of useful solutions, 
and lets the operators search those neighborhoods 
efficiently. 

The convergence properties of the SA operators are 
not influenced by the GA control loop around them. Each 
member of the current generation is created from one or 
more of the previous generation’s solutions-so the Mar- 
kov chain is not broken. The case for recombination is not 

quite so straightforward to analyze since the Markov pro- 
cess must now be defined over pairs of states-but the 
principle is the same. The formal analysis of the merged 
algorithm is similar to that of a parallel SA algorithm [201 
that represents Np,, independent periodically-interacting 
searches. In this case the searches are much less indepen- 
dent both the GA selection mechanism and the recombi- 
nation operations improve the efficiency of the search. 

Since the convergence properties of the SA algo- 
rithm are closely tied to both the annealing schedule and 
the method of mutation-the hybrid algorithm is better 
geared towards a real-valued representation. Thus far, most 
implementations of real-valued GA’s (with the exception 
of Evolution Strategies) have used heuristic mutation 
operators inspired by the more traditional bit-mutations. 
The merging of SA with GA in the current algorithm sug- 
gests that the exact form of mutation is important, and 
may have a dramatic effect on how the algorithm navi- 
gates through the problem-space. 

For example, FSA, mentioned earlier, uses an under- 
lying Cauchy distribution. Since a multivariate Cauchy 
cannot be generated by independently varying each dimen- 
sion as a univariate Cauchy distribution, the mutation must 
consider all dimensions at once. One way to derive a Cau- 
chy mutation operation [21] is by first generating an n- 
dimensional uniform vector and multiplying it by 4 5 ,  where X-Betag+) is a scalar random vari- 
able, and by aT,, a multiple of the current temperature. 

A final point to consider is population size. The 
merged algorithm can work with any size population. A 
small population will accentuate the SA properties of the 
algorithm (with the added benefit of crossover), while a 
large population will accentuate the exponential preference 
for better schemata. 

2 2  

7. Performance 
We have compared the proposed algorithm against a 

standard GA on a large variety of problems. The results 
given below were generated using the test suite of objec- 
tive functions provided by Baeck [22] as part of the 
GENEsYs package (using his C-code for the functions, but 
not for the algorithms). Since we are interested in how the 
SAWSAR operators can enhance an existing GA, we did 
not run both algorithms to convergence. Rather, we 
decided a-priori on a number of generations, and ran both 
algorithms for the same N,,,, which results in the same 
number of objective-function evaluations. We stored the 
best solution at the end of each run, and averaged them 
over 50 different runs. Since we are interested in large 
problems, we intentionally set the population to a low 
number (3). The dimension of the problems was kept high, 
mostly at 50 (a notable exception is F10 which is a 100- 
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city Traveling Salesman Problem). We only ran the func- 
tions for which the true minimum solution is given in [22] 
so that we can compare how far both algorithms are from 
the global optimum. 

The annealing schedule used for SAR/SAM was 
linear k-period annealing [lo] based on the number of 
generation the algorithm is asked to run, with T o  set as 
100 times the worst solution in the first generation. The 
probabilities for S A M  and S A R  were set such that recom- 
bination occurs twice as often as mutation. In the pure GA 
version, recombination was more than an order of magni- 
tude more likely than mutation. In all experiments we used 
an elitist strategy, copying the best member of the popula- 
tion to the next generation. 

F10 

F12 

F15 

F18 

FS 

F6 

100 

50 

50 

4 

0 

0 

0 

1 

0 

- 
- 
- 
- 

0 

31.3 30.2 

0.9 0.9 10" 

380.6 264.5 265.6 155.5 

53.3 I 28.7 1 43.9 I 7.9 

21285 64400.0 72L15.0 56865.0 4441.0 8 
N~~ = 3, N~~~ = 5000. (for F10 N ~ .  = 1oooO) 

p and U are calculated over 50 runs. 

As expected, the hybrid algorithm dramatically out- 
performs pure GA when there are hills to be climbed, e.g. 
F1 (Di2). F15 (mi2). On F3, which is a step-function, 
both algorithms are still equally far from the solution. F4 
is (Gi4 + rmd(O,l) ,  which means its minimum is dis- 
guised by noise. F5 is Shekel's Foxholes (only defined for 
2 dimensions). 

In almost all cases, the standard deviation of the 
solutions was considerably tighter for the hybrid algorithm. 
While the pure GA occasionally finds better solutions, the 
hybrid algorithm is more consistent. For example, on F12, 
which is the Hamming distance from the zero vector, the 
hybrid solution is worse than the pure GA, but the stan- 
dard deviation is an order of magnitude better. 

F10 is Krolak's 100-city Traveling-Salesman Prob- 
lem. This is by far the largest problem in the suite. In 
this case, clearly, the number of iterations performed was 
not high enough to approach the optimum-but this is 
characteristic of many real-life problems where there is no 
hint as to how many iterations are "enough". In this case, 
after loo00 generations, the relative error of the hybrid 
solution is 35% better than that of the pure GA, with a 
30% lower standard deviation over 50 runs. 

As a more realistic example, we considered the 
problem of training a feed-forward Neural network to 
predict the chaotic logistic map: = 4x,(l-x,). The 
network has two inputs: x, and x,-~,  one fully-connected 
hidden-layer of 10 sigmoidal units, and one output: x,+~. 
This involves optimizing about 50 weights. Backpropoga- 
tion is able to optimize the weights in 450 iterations 
through 250 input vectors, achieving an out-of-sample R 2  
of 0.98. 

The following table shows the results of using GA 
with and without the SAWSAR algorithms to optimize the 
weights. The objective function in this case is the mean- 
squared-error of running the network forward with the 
given weights, compared to the true output for the input 
sample. After the learning phase, we ran the network for- 
ward on an out-of-sample set of 750 vectors. 

TABLE 11 
Out-of-sample R for Neural Network. Npp = 3. 

0.88 0.95 
0.98 

In this case, the hybrid algorithm's hill-climbing 
ability gives it a strong advantage over the pure GA. After 
250 generations, which is 750 evaluations, the hybrid 
algorithm's out-of-sample performance is an order of mag- 
nitude better than the pure GA. The advantage of using the 
GA algorithm with SAWSAR over Backpropagation is 
that non-differentiable error measures and activation func- 
tions can be used. 

8. Conclusions 
We have presented a method of hybridizing GA's 

with SA's by replacing the siandard mutation and recom- 
bination operators by their SA versions: SAM and SAR. 
These operators perform the classic SA acceptance func- 
tion, and can otherwise be made identical to the standard 
operators. The hybrid algorithm can be configured to 
operate as pure GA, pure SA (or iterated SA), as well as a 
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variety of hybrid modes. 
The analysis has shown that this results in a hybrid 

algorithm which preserves the advantages of GA while 
emphasizing hillclimbing at the later stages of the search, 
thus improving its accuracy on many real-valued problems. 
This was found to be especially true for high dimensional 
problems, using a small population of solutions (3-5). 
Even in cases where the accuracy is not improved over a 
standard GA, the hybrid algorithm exhibits more con- 
sistency across multiple runs. 

The analysis also suggests that for real-valued GA’s, 
there is much to be gained by using CSA/FSA mutations 
instead of simple heuristic operators. These operators are 
known to improve the convergence and speed of pure SA, 
and should be coupled with an appropriate annealing 
schedule. 

We believe this work may contribute to making 
GA’s more popular in VLSI place-and-route problems, and 
in optimization of weights in large Neural networks that 
use non-standard error measures. 
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