
SIMMOS: A Multiple-Delay Switch-Level Simulator

Dan Adler

Motorola Semiconductor Israel (MSIL)
147 Bialik St., Ramat-Gan 61047, Israel

Abstract

SIMMOS is a multiple-delay logic simulator for MOS VLSI
circuits based on the switch-level model. In addition to finding the
ternary logic state at each node, SIMMOS estimates thetimedelay
required for that state to become valid. The delay calculation
method, based on the theory of RC trees, is introduced as a natural
extension of the dominant-path algorithm used for node state
evaluation.
Multi-level simulation in SIMMOS is achieved by using special
models for gate-levet primitives, and the ability to drive, and be
driven by ah RTL simulation environment.
For test-pattern grading, SIMMOS uses a probabilistic fault
analysis algorithm, modified to operate on bidirectional as well as
gate-level models.

Introduction
The design of VLSI chips, which may presently contain

over 100,000 transistors, requires special simulation and
checking tools to verify all aspects of the design process. If a
single simulator is to carry the design through all its stages,
it must be very flexible in its ability to model the circuit at
different levels. Often, parts of a design may only have a
behavioral model, while other parts may have gate-level
models without transistor sizes and some parts mayeven be
fully laid-out. The simulator must deal with the circuit as a
whole, modeling different parts in RTL, gate-level or switch-
level using a single test pattern.

Such a simulator was developed at MSIL. in an effort to
provide the block-design engineers with a verification tool
that can evolve with the design, and effectively model the
circuit at each level. It consists of an RTL simulator and a
gate-and-switch level simulator, which operate under a
common shell and interface through a set of shared nodes.
This paper describes the gate-and-switch level simulator
called SIMMOS, which offers several improvements over
the MOSSIM switch-level algorithm developed by Bryant [I].

SIMMOS extends Bryant’s MOSSIM algorithm to deal
with stages (nodes connected drain-to-source by conducting
transistors) that are driven by gate-level primitives, and
takes a more realistic approach to signal timing by
computing RC delays and introducing a scheduling
mechanism.

In MOSSIM, a ternary node state is found by tracing
dominant charging and discharging paths to each node in a
stage, and comparing their relative strengths. In terms of
timing, MOSSIM utilizes an internal unit-step model. All
state transitions within a stage occur instantaneously,
creating internal events that cause other stages to be
evaluated. The process continues until no more internal
events are generated, and then the simulation clock is
incremented.

This highly idealized timing model has often been
criticized as one of MOSSIM’s weaker points, since logic
verification with no timing information may fail to detect
serious design errors. Problems such as signal delays,
spikes, races, transient unknowns and synchronization in
multi-clock chips cannot be modeled in MOSSIM, and are
very difficult to diagnose even in a fabricated chip.

SIMMOS uses the fact that Bryant’s dominant-path
algorithm induces a tree structure over a stage to compute a
dominant-path delay according to the TREE algorithm
described in [4]. Several ad-hoc correction factors are used
to deal with simple (one-transistor deep) parallel paths,
slow-changing gate (rise-time ratio IS]), gate notfullyturned
on etc.

The Network Model
The basic network configuration and data structures of

MOSSIM are retained, along with parts of the simulation
algorithm. We assume the reader is familiar with [l], so we
will not repeat the details here.

In SIMMOS, a transistor is described by its type,
connections and W/L dimensions. The dimensions are
mapped into two parameters: a resistance calibrated for
timing, and a logic strength for contention. Similarly, each
node is assigned a capacitance, which is used for timing
calculation and is also mapped into a logic strength for
charge sharing events.

:---------------------,----------- --- ______-- J
r--- ----------------------------~ I

SIHMOS NETUORK : I
-------------- I

I
0
1 PHI1 .N 2W3 IN1 X !

I Y . NAND N30r P38 lN2 X :

i PHI2 .N 2513 OUT Y :

8 . CAP IN2 500 I
I

I . LINE Y 5DBB POLY
L____-____-_---------------------!

Figure 1: A SIMMOS network example.

23rd Design Automation Conference

0738-100X/86/0000/0159$01.00 01988 IEEE
Paper 9.1

I59

SIMMOS uses 32 different strengths, which are defined
by the user in terms of W/L or node capacitance. Using a
large number of strengths has several advantages: the
mapping of actual parameters into strengths is realistic,
large capacitive #nodes can override weak transistors and
transient X-states can be minimized (an important “escape”
mechanism). Also, no ad-hoc models need be created to deal
with exotic circuits, as is often the case in gate-level
simulators.

A network file can be generated automatically either from
a layout extraction program [8] or from work-station
schematics. In the former case, all relevant information is
supplied in the network file: transistor dimensions and
connectivity and parasitic node resistance and capacitance.
When a network is created from schematics, several
preprocessing steps take place. First, the hierarchy is
removed and the design “flattened”. The network in this
case consists of both transistors and togic-gates which are
defined by their type, W/L dimensions and connectivity.
Next, all active-device loads are estimated by the program,
based on a parameter file and the connectivity, and added to
the interconnect loads specified by the user.

Internally, the network is represented in three main
linked-fists: a node I’ist, a logic-gate list and a transistor list.
The connectivity lists for each node are similar to MOSSIM,
except that gate-fanout and gate-fanin lists are also
retained. Node states are 0, 1 or X, with some additional
symbols used to mark nodes that are changing, nodes that
suffer a threshold drop, and nodes that are decaying (tri-
state).

Switch-Level Delays
Switch-level simulation requires that groups of nodes

connected drain-to-source by conducting transistors be
evaluated collectively, through a relaxation process. This
slows down the simulation relative to gate-level programs
and complicates delay modeling.

Some switch-level timing simulators, like RSlM [2] and
VTlsim [3], use a Thevenin-equivalent model to represent a
stage, relative to each node, as a linear resistor and a voltage
source. The Thevenin resistor is then multiplied by the node
capacitance, yielding an RC delay for the node. The RSIM
algorithm is more accurate than MOSSIM in solving
competing drivers, but it poses two major problems. One is
that solving a general resistive network with respect toeach
node of the stage is a heavy computational task, and the
other is that the delay estimate does not take into account
how capacitances are distibuted in the stage.

Bryant’s MOSSIM algorithm is computationally simple,
linear and tree-based. It requires three relaxation steps per
stage: one to determine the blocking strength at each node,
and two more to find the strongest charging path and the
strongest discharging path. An important observation is
that, during the last two steps, we always traverse the
transistors in the stage from the driving end (strongest node)
of the stage towards th.e loading end, thus tracing through
the actual charging/discharging path to each node. We can
then compute local RC delays and accumulate them over the
path, resulting in a calculation method similar to the TREE
algorithm described in [4].

An inherent limitation of the TREE algorithm is that it
cannot be applied to a non-tree network because the driving
and loading networks of a node in such a network are not
explicit. This can cause serious timing errors in the
evaluation of stages containing parallel paths. A general
solution for RC networks has been developed by Lin and

Mead [4], using a technique called load redistribution, which
requires that a stage be decomposed into a number of tree
networks. In SIMMOS, we have adopted a less general
solution, which is limited to dealing with parallel paths that
are one transistor deep. This covers most practical cases
such as CMOS transfer gates, multi-input logic gates and
PLAs.

The method used to deal with simple parallel connections
in SIMMOS is by not cosidering such paths blocked, even
though they are disregarded by Bryant’s algorithm. When
SIMMOS detects simple parallel connections, it ahers the
blocking strength of the node farther down the path enabling
it to overpower an identical single transistor. Also, the
resistance used for delay calculation is recomputed to reflect
the parallel connection.

Following a stage evaluation, ‘projected’ values for all
node states are found, and the nodes are scheduled
according to their delay. An important question is what value
should the node assume during this transition time. An X-
state would beverypessimistic, since an unknownvalue has
a tendency to spread around the circuit with harmful results.
A more conservative solution is to leave the node in its old
state until the new value is scheduled. This solution is the
simplest to implement, but it requires that the delay be
defined as the time between when the input becomes valid
until the output begins to change, which is a somewhat
vague definition as it does not apply equally to all
configurations.

Another related problem is event descheduling. Often,
while a node is changing towards one value, a tater event
may cause the stage to be reevaluated. The node may then
have to be rescheduled with a new projected value. If the
more recent projected value is different than the older one, a
spike or race are reported and the old projected value is
discarded. The case of a new projected value that is equal to
the old one is more difficult to deal with. When the second
event occurs, the scheduled node is already in transition, so
the delay must reflect the reduced voltage swing.

One way of dealing with this problem istoconsider initial-
charge as an additional parameter in node delay calculation
[4]. Another is to schedule transitions as voltage ramps [3],
so that when such a case occurs, the time-constant is
multiplied by a speed-up factor which takes into account
how long the node had already been in transition when it
was rescheduled. We are currently investigating both
approaches in SIMMOS, since we have found this to be the
most serious cause of overestimation of path delays. The
most common path of this kind is a CMOS transfer-gate
operating in synchronous mode driving a large capacitive
load. If one of the gates turns on after the other, the
equivalent driving strength increases after the drain node
has already started its transition, so the speed-up is very
significant.

The rise/fall delay for a transistor output node is defined
as the time until the next stage starts to change. This is
different for source-drain connections (transistor stages)
than for gate-triggered transitions. In the latter case, the
delay time is selected as the time for the second transistor’s
output to reach a certain voltage. This voltage is taken to be
the minimum voltage the user might consider a glitch. The
calibration factors are extracted from circuit simulation for
stages with indentical and balanced (rise and fall) W/L
values.

Paper 9.1
160

Simulation primitives

Gate-level modeling is an important feature of SIMMOS. It
saves a great deal of CPU time in comparison to full switch-
level simulation, and makes the simulation data-base more
conformant with the schematics, therefore easier to debug.

When a node is only driven by unidirectional logic-gates,
SIMMOS uses a table lookup method to evaluate the output
state and a gate-delay procedure to compute the delay. Gate
delays are a function of the W/L dimensions, the gate-type
and the projected output state. Gates which have
serial/parallel connections of transistors are scaled
accordingly, so that the RC constant reflects the equivalent
resistance as seen from the gate output node.

Logic gates that are part of a transistor stage are treated
differrently, as part of the stage-evaluation process. When a
perturbed node has bidirectional transistor connections, a
stage is created based only on the transistor connectivity
lists. The first step in Bryant’s relaxation algorithm is to find
nodes connected to signal sources by scanning the input-
connectivity lists. At this point each node’s gate-fanin list is
also scanned and treated as an extension of the input-
connectvity list. A special lookup table similar to the gate-
output evaluation table is used tofind the gate path-blocking
strength, its up-driving and down-driving strengths, Agate-
delay evaluation is computed only if the gate-output node’s
current state is different than the gate’s driving state.

An important requirement is that a stage driven by a logic-
gate, and a similar stage comprised only of switch-level
transistors produce identical results, both in terms of logic
states and delays. To achieve this, SIMMOS tries to
distinguish between stages that behave like distributed RC
trees, and those that behave more like a Thevenin source
driving a capacitance through an equivalent resistor.

Tl T2

IN -+ OUT

T

Cl

TC2

Figure 2: Pass-transistor chain model.

When Cl<<C2 and Rl is much smaller than Tl’s on-
resistance, we consider the two transistors as one, with an
on-resistance equal to R(Tl)+R(T2) driving a capacitance
Cl + C2. This corresponds to the case where Tl and 12 are
very close physically, e.g. when they are part of a logic-gate
described at full switch-level. The second case is when the
two transistors are separated by a large capacitance Cl,
such that the delay[R(Tl)+Rl] x Cl is not negligible. In this
case the delay at OUT is estimated using the RC-TREE
approach.

SIMMOS makes the distinction between these cases at
pre-processing, by marking nodes as “intermediate nodes”.
These are nodes with a small capacitance, which are
connected to only one drain and one source of two different
transistors. At run-time, their on-resistances are
accumulated on the driving path, until a non-intermediate
node is reached - and only then is the time constant
computed. We have found that this method produces almost
identical results for multi-level and pure switch-level runs,
and models pass-transistor chains more accurately.

Pass transistor chains also affect the logic strength of
signals. When such a chain is encountered, besides finding
the combined on-resistance of the whole path, SIMMOS
also recomputes the logic strength of non-intermediate
nodes, thereby causing the “strength” of the signal at such
nodes to decrease. This option can also be over-ridden by the
user for pure logic simulations.

Special cases
Several ad-hoc mechanisms exist for treating special

cases. One such case is the scheduling of an X-state. When
contention occurs at some node, an unknown value is
scheduled. Care must be taken not to let transient X-states
ruin a simulation, since they are always treated too
pessimistically by ternary simulation algorithms. Instead of
scheduling an X-state immediately, SIMMOS schedules it as
if it were a full swing state transition, preserving the ‘old’
state. If the X-state is descheduled before its delay is over,
the new event is scheduled as if the node were a partially
charged node as explained earlier.

G1 I

G2

OUT 1

--.

lr

II

II

Figure 3; X-state scheduling example.

Scheduling transitions from an X-state to a valid state are
also problematic. Taking the maximum of the low-to-high
delay and the high-to-low delay produces over-pessimistic
timing in many situations. For example, modeling a chain of
inverters whose input becomes valid, using only low-to-high
delays (or vice-versa) will produce a delay that is grossly
exaggerated. The least of all evils seems to use minimum
delays in such cases, or to perform an initialization routine to
flag nodes whose states must be opposite.

Other special cases treated by SIMMOS are threshold-
voltage drops suffered by a node driven through a pass
transistor. If such a node drives a transistor gate, it multiplies
its on-resistance by some predetermined slow-down factor.
Stow rising/falling gate states are treated using the concept
of rise-time ratio [5]. This applies onlywhen a gatetransition
causes the stage to be evaluated, and only to that transistor.
Finally, clocked bootstrap-drivers are recognized and do not
produce a threshold drop.

One important case that SIMMOS cannot deal with is the
precise timing of ratioed transistors driving a stage from
multiple sources. This is very common in NMOS designs,
and therefore SIMMOS is only used in timing simulation
mode on CMOS designs where such situations are rare and
usually insignificant.

Event scheduling
The event-scheduling mechanism used in SIMMOS is

very similar to the one used in most gate-level logic
simulators. A time-queue is maintained with a basic
resolution of one nanosecond. Nodes are placed in a time

Paper 9.1
161

slot according to their delay and, if they are not descheduled
in the meanwhile, they assume their projected value when
that time slot becomes the current-time. Special care must
be taken to avoid reevaluating a stage whose nodes are
placed on the time-queue. To this end, a boolean flag is k:ept
for each node, marking whether the stage it belongs to needs
to be reevaluated or not. This flag is set to one if an event
occurs that has some effect on the node or the states of its
linked transistors. If the flag is zero, only the transistor
fanout list and logic-gate fanout list need to be perturbed.

Faster Simulation
Switch-level simulation is inherently slower than g,ate-

level, and the multiple-delay mode slows it down even more.
Retaining logic gates as functional elements whenever they
occur saves a great deal of CPU time in event processing and
stage manipulation, but for large designs even this is not
enough.

A speed-up method used in SIMMOS to reduce large
redundant stages is parallel-connection extraction. It applies
to PLAs and large NOR gates where many transistors are
connected in parallel, usually as pull-downs. At
preprocessing, such transistors are identified and merged
into one large transistor whose gate state is an OR function
of the other gate states. The result is identical in terms of the
logic state, and yields a constant worst-case delay. This can
be done regardless of whether the network originates fl-om
layout or from schematics, since it is based solely on the
connectivity. In well structured VLSI blocks, the number of
simulated transistors can thus be greatly reduced with a
similar effect on runtime.

Fault analysis
Fault coverage is becoming an increasingly impor,tant

factor in the design-verification phase, as well as for test-
pattern grading. Switch-level fault simulation [7] techniques
have been developed, but their practicality in a VLSI design
environment is questionable. Another promising
developement in the field of fault modeling is the concept of
statistical fault analysis [9]. This method, origirlally
developed for gate-level designs, yields results comparable
to exhaustive stuck-at fault simulation, with very little
increase in rug-time over a single “good-machine”
simulation.

The algorithm uses probability theory to construct
equations for the propagation of observabilities through the
network. These, together with controllabilities and g.ate-
input sensitization probabilities which are computed dulring
the course of each regular simulation session, are
manipulated to yield a probability for each signal to be stuck-
high detectable and stuck-lowdetectable, for the given set of
test vectors.

A similar technique has been implemented in SIMMOS
using a simplified model to compute observability Ipro-
pagation through bidirectional transistors. The simpli-
fication is in assuming that although the transistors are
treated as bidirectional during the simulation, they are in
fact unidirectional in the sense that they always conduct in
the same direction. This is an acceptable premise for most
designs, and the results are not greatly affected if a small
number of transistors are truly bidirectional. Two additional
parameters are required per transistor, a 1 -pass probability
and a O-pass probability. The 1 -pass probability is a measure
of the probability of the transistor being on and passing a
high value, and the O-pass probability is, likewise, the
probability of an on-transistor passing a low. These para-
meters are updated during the regular simulation session,
and are used to compute the observabilities later on.

Detailed algorithms cannot be included here, but they
follow closely the computation method described in [9]. The
fact that full scale fault coverage can be achieved soquickly,
without need to simulate the “bad” machines, compensates
for a few inaccuracies in the detectability of certain nodes.
The overhead required while running the “good machine”is
quite small, consisting mainly of updating afewcounters per
event.

The run-time command FSIM triggers the evaluation of
observabilities ancl consequently, the fault analysis. It can be
repeated at different timepoints, to see how the coverage is
proceeding and whether more tests are required.

Performance

SIMMOS has been used mainly as a block-verification tool
in the design of the MC68605 X.25 Controller and the
MC68824Token-Bus Controller. It is currently being used in
the design of several other VLSI chips at MSIL It has
uncovered many design errors that would normally have
been discovered only at the silicon-testing phase such as
complex timing problems, signals driven “in the wrong
direction”, logic errors caused by bad sizing of transistors,
race conditions etc. Timing estimates in SIMMOS are
generaly within 20% of (worst case) circuit simulation
results, with ad-hocsolutionsfor problematicconfigurations
like pass-transistor chains, bootstrap drivers etc. producing
a consistent level of accuracy.

Since SIMMOS treats certain configurations (like PLAs,
decoders, logic-gates etc.) differently; the number of events-
per-second is strongly dependent on the type of circuit being
simulated, and therefore not a good indicator. We have,
however, found that SIMMOS runs onlyslightlyslowerthan
our version of MOSSIM II (which may not be an optimal
implementation), and about 2-3 times slower than a
commercial gate-level software simulator for large designs.

Conclusion

A multiple-delay switch level simulator has been
described that uses a mixture of gate-level and switch-level
concepts in a single environment.

Used in conjunction with RTL simulation, SIMMOS
provides a means of simulating the design at the lowest level
available at each stage of the design. The common
simulation mode allows any part of a single design to be
described in behavioral, gate or switch levels.

Process-dependence, as well as temperature, voltage
level, short channel effects etc. are taken into account in the
form of approximate constant factors used to compute
transistor on-resistance and node capacitance and
resistance to produce worst-case timing.

A probabilistic fault analysis module is used for fast and
accurate fault verification and test grading by finding all
single-node-stuck-at faults.

Recently, a timing-verification program similar to TV [6]
and CRYSTAL [5] has been developed at MSIL based on
SIMMOS. The delay-evaluation method, where the charging
path and discharging path delays are computed separately,
and the built-in scheduling mechanism, have made it
possible to develop such a tool in a relatively short time.

Paper 9.1
162

Acknowledgement
The multi-level environment that merges SIMMOS with

MSIL-RTL was developed by Ronen Keinan and the author.
The SIMMOS timing-verifier was written by Carina Ben-Zvi.

llia Greenblat defined an intermediate language, MSIL-
DBB, which interfaces between SIMMOS to either work-
station schematics or MSIL’s layout extractor [8].

The author wishes to thank Israel Kashat, Arie Brish and
Yehuda Shvager for their advice and support, and all MSIL
chip-designers for their important feedback and
suggestions.

References

[l] R. Bryant, “A Switch-Level Model and Simulator for MOS Digital
Systems”. IEEE Transactions on Computers, Feb. 1984.

[Z] C. Terman. “RSIM - A Logic-level Timing Simulator”.
IEEE International Conference on Computer Design, 1983.

[3] T. Schaefer, “A Transistor-Level Logic-with-Timing Simulator for
MOS Circuits”.
22nd Design Automation Conference, 1985.

[4] T. Lin and C. Mead, “Signal Delay in General RC Networks”.
IEEE Transactions on CAD, Oct. 1984.

(51 J. Ousterhout, “Switch-Level Delay Models for Digital MOS VLSI”.
21st Design Automation Conference, 1984.

[S] N. Jouppi, “Timing Analysis for NMOS VLSI”.
20th Design Automation Conference, 1983.

171 R. Bryant and M. Schuster, “Performance Evaluation of FMOSSIM. a
Concurrent Switch-Level Fault Simulator”.
22th Design Automation Conference, 1985.

[8] A. Brish, C. Ben-Zvi and 0. Pardo, “RC - Parasitic Load Extractor From
Layout”.
To be published.

[9] S. Jain and V. Agrawal. “STAFAN: An Alternative To Fault
Simulation”.
21th Design Automation Conference, $984.

Paper 9.1
163

