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Abstract 

SIMMOS is a multiple-delay logic simulator for MOS VLSI 
circuits based on the switch-level model. In addition to finding the 
ternary logic state at each node, SIMMOS estimates thetimedelay 
required for that state to become valid. The delay calculation 
method, based on the theory of RC trees, is introduced as a natural 
extension of the dominant-path algorithm used for node state 
evaluation. 
Multi-level simulation in SIMMOS is achieved by using special 
models for gate-levet primitives, and the ability to drive, and be 
driven by ah RTL simulation environment. 
For test-pattern grading, SIMMOS uses a probabilistic fault 
analysis algorithm, modified to operate on bidirectional as well as 
gate-level models. 

Introduction 
The design of VLSI chips, which may presently contain 

over 100,000 transistors, requires special simulation and 
checking tools to verify all aspects of the design process. If a 
single simulator is to carry the design through all its stages, 
it must be very flexible in its ability to model the circuit at 
different levels. Often, parts of a design may only have a 
behavioral model, while other parts may have gate-level 
models without transistor sizes and some parts mayeven be 
fully laid-out. The simulator must deal with the circuit as a 
whole, modeling different parts in RTL, gate-level or switch- 
level using a single test pattern. 

Such a simulator was developed at MSIL. in an effort to 
provide the block-design engineers with a verification tool 
that can evolve with the design, and effectively model the 
circuit at each level. It consists of an RTL simulator and a 
gate-and-switch level simulator, which operate under a 
common shell and interface through a set of shared nodes. 
This paper describes the gate-and-switch level simulator 
called SIMMOS, which offers several improvements over 
the MOSSIM switch-level algorithm developed by Bryant [I]. 

SIMMOS extends Bryant’s MOSSIM algorithm to deal 
with stages (nodes connected drain-to-source by conducting 
transistors) that are driven by gate-level primitives, and 
takes a more realistic approach to signal timing by 
computing RC delays and introducing a scheduling 
mechanism. 

In MOSSIM, a ternary node state is found by tracing 
dominant charging and discharging paths to each node in a 
stage, and comparing their relative strengths. In terms of 
timing, MOSSIM utilizes an internal unit-step model. All 
state transitions within a stage occur instantaneously, 
creating internal events that cause other stages to be 
evaluated. The process continues until no more internal 
events are generated, and then the simulation clock is 
incremented. 

This highly idealized timing model has often been 
criticized as one of MOSSIM’s weaker points, since logic 
verification with no timing information may fail to detect 
serious design errors. Problems such as signal delays, 
spikes, races, transient unknowns and synchronization in 
multi-clock chips cannot be modeled in MOSSIM, and are 
very difficult to diagnose even in a fabricated chip. 

SIMMOS uses the fact that Bryant’s dominant-path 
algorithm induces a tree structure over a stage to compute a 
dominant-path delay according to the TREE algorithm 
described in [4]. Several ad-hoc correction factors are used 
to deal with simple (one-transistor deep) parallel paths, 
slow-changing gate (rise-time ratio IS]), gate notfullyturned 
on etc. 

The Network Model 
The basic network configuration and data structures of 

MOSSIM are retained, along with parts of the simulation 
algorithm. We assume the reader is familiar with [l], so we 
will not repeat the details here. 

In SIMMOS, a transistor is described by its type, 
connections and W/L dimensions. The dimensions are 
mapped into two parameters: a resistance calibrated for 
timing, and a logic strength for contention. Similarly, each 
node is assigned a capacitance, which is used for timing 
calculation and is also mapped into a logic strength for 
charge sharing events. 
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Figure 1: A SIMMOS network example. 
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SIMMOS uses 32 different strengths, which are defined 
by the user in terms of W/L or node capacitance. Using a 
large number of strengths has several advantages: the 
mapping of actual parameters into strengths is realistic, 
large capacitive #nodes can override weak transistors and 
transient X-states can be minimized (an important “escape” 
mechanism). Also, no ad-hoc models need be created to deal 
with exotic circuits, as is often the case in gate-level 
simulators. 

A network file can be generated automatically either from 
a layout extraction program [8] or from work-station 
schematics. In the former case, all relevant information is 
supplied in the network file: transistor dimensions and 
connectivity and parasitic node resistance and capacitance. 
When a network is created from schematics, several 
preprocessing steps take place. First, the hierarchy is 
removed and the design “flattened”. The network in this 
case consists of both transistors and togic-gates which are 
defined by their type, W/L dimensions and connectivity. 
Next, all active-device loads are estimated by the program, 
based on a parameter file and the connectivity, and added to 
the interconnect loads specified by the user. 

Internally, the network is represented in three main 
linked-fists: a node I’ist, a logic-gate list and a transistor list. 
The connectivity lists for each node are similar to MOSSIM, 
except that gate-fanout and gate-fanin lists are also 
retained. Node states are 0, 1 or X, with some additional 
symbols used to mark nodes that are changing, nodes that 
suffer a threshold drop, and nodes that are decaying (tri- 
state). 

Switch-Level Delays 
Switch-level simulation requires that groups of nodes 

connected drain-to-source by conducting transistors be 
evaluated collectively, through a relaxation process. This 
slows down the simulation relative to gate-level programs 
and complicates delay modeling. 

Some switch-level timing simulators, like RSlM [2] and 
VTlsim [3], use a Thevenin-equivalent model to represent a 
stage, relative to each node, as a linear resistor and a voltage 
source. The Thevenin resistor is then multiplied by the node 
capacitance, yielding an RC delay for the node. The RSIM 
algorithm is more accurate than MOSSIM in solving 
competing drivers, but it poses two major problems. One is 
that solving a general resistive network with respect toeach 
node of the stage is a heavy computational task, and the 
other is that the delay estimate does not take into account 
how capacitances are distibuted in the stage. 

Bryant’s MOSSIM algorithm is computationally simple, 
linear and tree-based. It requires three relaxation steps per 
stage: one to determine the blocking strength at each node, 
and two more to find the strongest charging path and the 
strongest discharging path. An important observation is 
that, during the last two steps, we always traverse the 
transistors in the stage from the driving end (strongest node) 
of the stage towards th.e loading end, thus tracing through 
the actual charging/discharging path to each node. We can 
then compute local RC delays and accumulate them over the 
path, resulting in a calculation method similar to the TREE 
algorithm described in [4]. 

An inherent limitation of the TREE algorithm is that it 
cannot be applied to a non-tree network because the driving 
and loading networks of a node in such a network are not 
explicit. This can cause serious timing errors in the 
evaluation of stages containing parallel paths. A general 
solution for RC networks has been developed by Lin and 

Mead [4], using a technique called load redistribution, which 
requires that a stage be decomposed into a number of tree 
networks. In SIMMOS, we have adopted a less general 
solution, which is limited to dealing with parallel paths that 
are one transistor deep. This covers most practical cases 
such as CMOS transfer gates, multi-input logic gates and 
PLAs. 

The method used to deal with simple parallel connections 
in SIMMOS is by not cosidering such paths blocked, even 
though they are disregarded by Bryant’s algorithm. When 
SIMMOS detects simple parallel connections, it ahers the 
blocking strength of the node farther down the path enabling 
it to overpower an identical single transistor. Also, the 
resistance used for delay calculation is recomputed to reflect 
the parallel connection. 

Following a stage evaluation, ‘projected’ values for all 
node states are found, and the nodes are scheduled 
according to their delay. An important question is what value 
should the node assume during this transition time. An X- 
state would beverypessimistic, since an unknownvalue has 
a tendency to spread around the circuit with harmful results. 
A more conservative solution is to leave the node in its old 
state until the new value is scheduled. This solution is the 
simplest to implement, but it requires that the delay be 
defined as the time between when the input becomes valid 
until the output begins to change, which is a somewhat 
vague definition as it does not apply equally to all 
configurations. 

Another related problem is event descheduling. Often, 
while a node is changing towards one value, a tater event 
may cause the stage to be reevaluated. The node may then 
have to be rescheduled with a new projected value. If the 
more recent projected value is different than the older one, a 
spike or race are reported and the old projected value is 
discarded. The case of a new projected value that is equal to 
the old one is more difficult to deal with. When the second 
event occurs, the scheduled node is already in transition, so 
the delay must reflect the reduced voltage swing. 

One way of dealing with this problem istoconsider initial- 
charge as an additional parameter in node delay calculation 
[4]. Another is to schedule transitions as voltage ramps [3], 
so that when such a case occurs, the time-constant is 
multiplied by a speed-up factor which takes into account 
how long the node had already been in transition when it 
was rescheduled. We are currently investigating both 
approaches in SIMMOS, since we have found this to be the 
most serious cause of overestimation of path delays. The 
most common path of this kind is a CMOS transfer-gate 
operating in synchronous mode driving a large capacitive 
load. If one of the gates turns on after the other, the 
equivalent driving strength increases after the drain node 
has already started its transition, so the speed-up is very 
significant. 

The rise/fall delay for a transistor output node is defined 
as the time until the next stage starts to change. This is 
different for source-drain connections (transistor stages) 
than for gate-triggered transitions. In the latter case, the 
delay time is selected as the time for the second transistor’s 
output to reach a certain voltage. This voltage is taken to be 
the minimum voltage the user might consider a glitch. The 
calibration factors are extracted from circuit simulation for 
stages with indentical and balanced (rise and fall) W/L 
values. 
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Simulation primitives 

Gate-level modeling is an important feature of SIMMOS. It 
saves a great deal of CPU time in comparison to full switch- 
level simulation, and makes the simulation data-base more 
conformant with the schematics, therefore easier to debug. 

When a node is only driven by unidirectional logic-gates, 
SIMMOS uses a table lookup method to evaluate the output 
state and a gate-delay procedure to compute the delay. Gate 
delays are a function of the W/L dimensions, the gate-type 
and the projected output state. Gates which have 
serial/parallel connections of transistors are scaled 
accordingly, so that the RC constant reflects the equivalent 
resistance as seen from the gate output node. 

Logic gates that are part of a transistor stage are treated 
differrently, as part of the stage-evaluation process. When a 
perturbed node has bidirectional transistor connections, a 
stage is created based only on the transistor connectivity 
lists. The first step in Bryant’s relaxation algorithm is to find 
nodes connected to signal sources by scanning the input- 
connectivity lists. At this point each node’s gate-fanin list is 
also scanned and treated as an extension of the input- 
connectvity list. A special lookup table similar to the gate- 
output evaluation table is used tofind the gate path-blocking 
strength, its up-driving and down-driving strengths, Agate- 
delay evaluation is computed only if the gate-output node’s 
current state is different than the gate’s driving state. 

An important requirement is that a stage driven by a logic- 
gate, and a similar stage comprised only of switch-level 
transistors produce identical results, both in terms of logic 
states and delays. To achieve this, SIMMOS tries to 
distinguish between stages that behave like distributed RC 
trees, and those that behave more like a Thevenin source 
driving a capacitance through an equivalent resistor. 

Tl T2 

IN -+ OUT 

T 

Cl 

TC2 

Figure 2: Pass-transistor chain model. 

When Cl<<C2 and Rl is much smaller than Tl’s on- 
resistance, we consider the two transistors as one, with an 
on-resistance equal to R(Tl)+R(T2) driving a capacitance 
Cl + C2. This corresponds to the case where Tl and 12 are 
very close physically, e.g. when they are part of a logic-gate 
described at full switch-level. The second case is when the 
two transistors are separated by a large capacitance Cl, 
such that the delay[R(Tl)+Rl] x Cl is not negligible. In this 
case the delay at OUT is estimated using the RC-TREE 
approach. 

SIMMOS makes the distinction between these cases at 
pre-processing, by marking nodes as “intermediate nodes”. 
These are nodes with a small capacitance, which are 
connected to only one drain and one source of two different 
transistors. At run-time, their on-resistances are 
accumulated on the driving path, until a non-intermediate 
node is reached - and only then is the time constant 
computed. We have found that this method produces almost 
identical results for multi-level and pure switch-level runs, 
and models pass-transistor chains more accurately. 

Pass transistor chains also affect the logic strength of 
signals. When such a chain is encountered, besides finding 
the combined on-resistance of the whole path, SIMMOS 
also recomputes the logic strength of non-intermediate 
nodes, thereby causing the “strength” of the signal at such 
nodes to decrease. This option can also be over-ridden by the 
user for pure logic simulations. 

Special cases 
Several ad-hoc mechanisms exist for treating special 

cases. One such case is the scheduling of an X-state. When 
contention occurs at some node, an unknown value is 
scheduled. Care must be taken not to let transient X-states 
ruin a simulation, since they are always treated too 
pessimistically by ternary simulation algorithms. Instead of 
scheduling an X-state immediately, SIMMOS schedules it as 
if it were a full swing state transition, preserving the ‘old’ 
state. If the X-state is descheduled before its delay is over, 
the new event is scheduled as if the node were a partially 
charged node as explained earlier. 
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Figure 3; X-state scheduling example. 

Scheduling transitions from an X-state to a valid state are 
also problematic. Taking the maximum of the low-to-high 
delay and the high-to-low delay produces over-pessimistic 
timing in many situations. For example, modeling a chain of 
inverters whose input becomes valid, using only low-to-high 
delays (or vice-versa) will produce a delay that is grossly 
exaggerated. The least of all evils seems to use minimum 
delays in such cases, or to perform an initialization routine to 
flag nodes whose states must be opposite. 

Other special cases treated by SIMMOS are threshold- 
voltage drops suffered by a node driven through a pass 
transistor. If such a node drives a transistor gate, it multiplies 
its on-resistance by some predetermined slow-down factor. 
Stow rising/falling gate states are treated using the concept 
of rise-time ratio [5]. This applies onlywhen a gatetransition 
causes the stage to be evaluated, and only to that transistor. 
Finally, clocked bootstrap-drivers are recognized and do not 
produce a threshold drop. 

One important case that SIMMOS cannot deal with is the 
precise timing of ratioed transistors driving a stage from 
multiple sources. This is very common in NMOS designs, 
and therefore SIMMOS is only used in timing simulation 
mode on CMOS designs where such situations are rare and 
usually insignificant. 

Event scheduling 
The event-scheduling mechanism used in SIMMOS is 

very similar to the one used in most gate-level logic 
simulators. A time-queue is maintained with a basic 
resolution of one nanosecond. Nodes are placed in a time 

Paper 9.1 
161 



slot according to their delay and, if they are not descheduled 
in the meanwhile, they assume their projected value when 
that time slot becomes the current-time. Special care must 
be taken to avoid reevaluating a stage whose nodes are 
placed on the time-queue. To this end, a boolean flag is k:ept 
for each node, marking whether the stage it belongs to needs 
to be reevaluated or not. This flag is set to one if an event 
occurs that has some effect on the node or the states of its 
linked transistors. If the flag is zero, only the transistor 
fanout list and logic-gate fanout list need to be perturbed. 

Faster Simulation 
Switch-level simulation is inherently slower than g,ate- 

level, and the multiple-delay mode slows it down even more. 
Retaining logic gates as functional elements whenever they 
occur saves a great deal of CPU time in event processing and 
stage manipulation, but for large designs even this is not 
enough. 

A speed-up method used in SIMMOS to reduce large 
redundant stages is parallel-connection extraction. It applies 
to PLAs and large NOR gates where many transistors are 
connected in parallel, usually as pull-downs. At 
preprocessing, such transistors are identified and merged 
into one large transistor whose gate state is an OR function 
of the other gate states. The result is identical in terms of the 
logic state, and yields a constant worst-case delay. This can 
be done regardless of whether the network originates fl-om 
layout or from schematics, since it is based solely on the 
connectivity. In well structured VLSI blocks, the number of 
simulated transistors can thus be greatly reduced with a 
similar effect on runtime. 

Fault analysis 
Fault coverage is becoming an increasingly impor,tant 

factor in the design-verification phase, as well as for test- 
pattern grading. Switch-level fault simulation [7] techniques 
have been developed, but their practicality in a VLSI design 
environment is questionable. Another promising 
developement in the field of fault modeling is the concept of 
statistical fault analysis [9]. This method, origirlally 
developed for gate-level designs, yields results comparable 
to exhaustive stuck-at fault simulation, with very little 
increase in rug-time over a single “good-machine” 
simulation. 

The algorithm uses probability theory to construct 
equations for the propagation of observabilities through the 
network. These, together with controllabilities and g.ate- 
input sensitization probabilities which are computed dulring 
the course of each regular simulation session, are 
manipulated to yield a probability for each signal to be stuck- 
high detectable and stuck-lowdetectable, for the given set of 
test vectors. 

A similar technique has been implemented in SIMMOS 
using a simplified model to compute observability Ipro- 
pagation through bidirectional transistors. The simpli- 
fication is in assuming that although the transistors are 
treated as bidirectional during the simulation, they are in 
fact unidirectional in the sense that they always conduct in 
the same direction. This is an acceptable premise for most 
designs, and the results are not greatly affected if a small 
number of transistors are truly bidirectional. Two additional 
parameters are required per transistor, a 1 -pass probability 
and a O-pass probability. The 1 -pass probability is a measure 
of the probability of the transistor being on and passing a 
high value, and the O-pass probability is, likewise, the 
probability of an on-transistor passing a low. These para- 
meters are updated during the regular simulation session, 
and are used to compute the observabilities later on. 

Detailed algorithms cannot be included here, but they 
follow closely the computation method described in [9]. The 
fact that full scale fault coverage can be achieved soquickly, 
without need to simulate the “bad” machines, compensates 
for a few inaccuracies in the detectability of certain nodes. 
The overhead required while running the “good machine”is 
quite small, consisting mainly of updating afewcounters per 
event. 

The run-time command FSIM triggers the evaluation of 
observabilities ancl consequently, the fault analysis. It can be 
repeated at different timepoints, to see how the coverage is 
proceeding and whether more tests are required. 

Performance 

SIMMOS has been used mainly as a block-verification tool 
in the design of the MC68605 X.25 Controller and the 
MC68824Token-Bus Controller. It is currently being used in 
the design of several other VLSI chips at MSIL It has 
uncovered many design errors that would normally have 
been discovered only at the silicon-testing phase such as 
complex timing problems, signals driven “in the wrong 
direction”, logic errors caused by bad sizing of transistors, 
race conditions etc. Timing estimates in SIMMOS are 
generaly within 20% of (worst case) circuit simulation 
results, with ad-hocsolutionsfor problematicconfigurations 
like pass-transistor chains, bootstrap drivers etc. producing 
a consistent level of accuracy. 

Since SIMMOS treats certain configurations (like PLAs, 
decoders, logic-gates etc.) differently; the number of events- 
per-second is strongly dependent on the type of circuit being 
simulated, and therefore not a good indicator. We have, 
however, found that SIMMOS runs onlyslightlyslowerthan 
our version of MOSSIM II (which may not be an optimal 
implementation), and about 2-3 times slower than a 
commercial gate-level software simulator for large designs. 

Conclusion 

A multiple-delay switch level simulator has been 
described that uses a mixture of gate-level and switch-level 
concepts in a single environment. 

Used in conjunction with RTL simulation, SIMMOS 
provides a means of simulating the design at the lowest level 
available at each stage of the design. The common 
simulation mode allows any part of a single design to be 
described in behavioral, gate or switch levels. 

Process-dependence, as well as temperature, voltage 
level, short channel effects etc. are taken into account in the 
form of approximate constant factors used to compute 
transistor on-resistance and node capacitance and 
resistance to produce worst-case timing. 

A probabilistic fault analysis module is used for fast and 
accurate fault verification and test grading by finding all 
single-node-stuck-at faults. 

Recently, a timing-verification program similar to TV [6] 
and CRYSTAL [5] has been developed at MSIL based on 
SIMMOS. The delay-evaluation method, where the charging 
path and discharging path delays are computed separately, 
and the built-in scheduling mechanism, have made it 
possible to develop such a tool in a relatively short time. 
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